EnOTE.WEEBIY.COM

Handbook of Formulae and Physical Constants

For The Use Of Students And Examination Candidates

Duplication of this material for student in-class use or for examination purposes is permitted without written approval.

Approved by the Interprovincial Power Engineering Curriculum Committee and the Provincial Chief Inspectors' Association's Committee for the standardization of Power Engineer's Examinations n Canada.

EПOTE.WEEBLY.COM

Table of Contents

TOPIC PAGE
SI Multiples 1
Basic Units (distance, area, volume, mass, density) 2
Mathematical Formulae 5
Applied Mechanics 10
Thermodynamics 21
Fluid Mechanics. 28
Electricity 30
Periodic Table 34

Names in the Metric System

VALUE	EXPONENT	SYMBOL	PREFIX
1000000000000	10^{12}	T	tera
1000000000	10^{9}	G	giga
1000000	10^{6}	M	mega
1000	10^{3}	k	kilo
100	10^{2}	h	hecto
10	10^{1}	da	deca
0.1	10^{-1}	d	deci
0.01	10^{-2}	c	centi
0.001	10^{-3}	m	milli
0.000001	10^{-6}	μ	micro
0.000000001	10^{-9}	n	nano
0.000000000001	10^{-12}	p	pico

Conversion Chart for Metric Units

		To Milli-	To Centi-	To Deci-	To Metre, Gram, Litre	To Deca-	To Hecto-	To Kilo-
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\lambda} \\ & 0 \\ & \stackrel{0}{\circ} \end{aligned}$	Kilo-	$\times 10^{6}$	$\times 10^{5}$	$\times 10^{4}$	$\times 10^{3}$	$\times 10^{2}$	$\times 10^{1}$	
	Hecto-	$\times 10^{5}$	$\times 10^{4}$	$\times 10^{3}$	$\times 10^{2}$	$\times 10^{1}$		$\times 10^{-1}$
	Deca-	$\times 10^{4}$	$\times 10^{3}$	$\times 10^{2}$	$\times 10^{1}$		$\times 10^{-1}$	$\times 10^{-2}$
	Metre, Gram, Litre	$\times 10^{3}$	$\times 10^{2}$	$\times 10^{1}$		$\times 10^{-1}$	$\times 10^{-2}$	$\times 10^{-3}$
	Deci-	$\times 10^{2}$	$\times 10^{1}$		$\times 10^{-1}$	$\times 10^{-2}$	$\times 10^{-3}$	$\times 10^{-4}$
	Centi-	$\times 10^{1}$		$\times 10^{-1}$	$\times 10^{-2}$	$\times 10^{-3}$	$\times 10^{-4}$	$\times 10^{-5}$
	Milli-		$\times 10^{-1}$	$\times 10^{-2}$	$\times 10^{-3}$	$\times 10^{-4}$	$\times 10^{-5}$	$\times 10^{-6}$

BASIC UNITS

IMPERIAL

DISTANCE

1 metre $(1 \mathrm{~m})=10$ decimetres $(10 \mathrm{dm})$
$=100$ centimetres $(100 \mathrm{~cm})$
$=1000$ millimetres $(1000 \mathrm{~mm})$

1 decametre $(1 \mathrm{dam})=10 \mathrm{~m}$
1 hectometre $(1 \mathrm{hm})=100 \mathrm{~m}$
1 kilometre $(1 \mathrm{~km})=1000 \mathrm{~m}$

Conversions:

$$
\begin{aligned}
1 \mathrm{in} . & =25.4 \mathrm{~mm} \\
1 \mathrm{ft} & =30.48 \mathrm{~cm} \\
1 \mathrm{mile} & =1.61 \mathrm{~km} \\
1 \mathrm{yd} & =0.914 \mathrm{~m} \\
1 \mathrm{~m} & =3.28 \mathrm{ft}
\end{aligned}
$$

Area

$$
\begin{aligned}
1 \text { sq metre }\left(1 \mathrm{~m}^{2}\right) & =10000 \mathrm{~cm}^{2} \\
& =1000000 \mathrm{~mm}^{2}
\end{aligned} \begin{aligned}
1 \mathrm{ft}^{2} & =144 \mathrm{in.}^{2} \\
1 \mathrm{yd}^{2} & =9 \mathrm{ft}^{2} \\
1 \text { sq mile } & =640 \text { acre }=1 \text { section }
\end{aligned}
$$

1 sq hectometre $\left(1 \mathrm{hm}^{2}\right)=10000 \mathrm{~m}^{2}$

$$
=1 \text { hectare (} 1 \mathrm{ha} \text {) }
$$

$$
\begin{aligned}
12 \mathrm{in} . & =1 \mathrm{ft} \\
3 \mathrm{ft} & =1 \mathrm{yd} \\
5280 \mathrm{ft} & =1 \mathrm{mile} \\
1760 \mathrm{yd} & =1 \mathrm{mile}
\end{aligned}
$$

$$
1 \mathrm{sq} \mathrm{~km}\left(1 \mathrm{~km}^{2}\right)=1000000 \mathrm{~m}^{2}
$$

Conversions:

$$
\begin{aligned}
1 \mathrm{in}^{2} .^{2} & =6.45 \mathrm{~cm}^{2}=645 \mathrm{~mm}^{2} \\
1 \mathrm{~m}^{2} & =10.8 \mathrm{ft}^{2} \\
1 \text { acre } & =0.405 \mathrm{ha} \\
1 \text { sq mile } & =2.59 \mathrm{~km}^{2}
\end{aligned}
$$

Volume

$$
\begin{aligned}
1 \mathrm{~m}^{3} & =1000000 \mathrm{~cm}^{3} \\
& =1 \times 10^{9} \mathrm{~mm}^{3}
\end{aligned}
$$

$1 \mathrm{dm}^{3}=1$ litre
1 litre $=1000 \mathrm{~cm}^{3}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
$1 \mathrm{~m}^{3}=1000$ litres

$$
\begin{aligned}
1 \mathrm{ft}^{3} & =1728 \mathrm{in.}^{3} \\
1 \mathrm{yd}^{3} & =27 \mathrm{ft}^{3} \\
\text { 1(liquid) U.S. gallon } & =231 \mathrm{in.} \\
& =4 \text { (liquid) quarts } \\
\text { 1 U.S. barrel (bbl) } & =42 \text { U.S. gal. } \\
1 \text { imperial gallon } & =1.2 \text { U.S. gal. }
\end{aligned}
$$

Conversions:

$$
\begin{aligned}
1 \mathrm{in.}^{3} & =16.4 \mathrm{~cm}^{3} \\
1 \mathrm{~m}^{3} & =35.3 \mathrm{ft}^{3} \\
1 \text { litre } & =61 \mathrm{in}^{3} \\
1 \text { U.S.gal } & =3.78 \text { litres } \\
1 \text { U.S. bbl } & =159 \text { litres } \\
1 \text { litre } / \mathrm{s} & =15.9 \text { U.S. gal } / \mathrm{min}
\end{aligned}
$$

Mass and Weight

1 kilogram (1 kg) = 1000 grams $1000 \mathrm{~kg}=1$ tonne

$$
\begin{aligned}
2000 \mathrm{lb} & =1 \text { ton (short) } \\
1 \text { long ton } & =2240 \mathrm{lb}
\end{aligned}
$$

Conversions:

1 kg (on Earth) results in a weight of 2.2 lb

Density

$$
\begin{array}{l|l}
\text { mass density }=\frac{\text { mass }}{\text { volume }} & \text { weight density }=\frac{\text { weight }}{\text { volume }} \\
\rho=\frac{\mathrm{m}}{\mathrm{~V}}\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) & \rho=\frac{\mathrm{w}}{\mathrm{~V}}\left(\frac{\mathrm{lb}}{\mathrm{ft}^{3}}\right)
\end{array}
$$

Conversions:

(on Earth) a mass density of $1 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$ results in a weight density of $0.0623 \frac{\mathrm{lb}}{\mathrm{ft}^{3}}$

RELATIVE DENSITY

In SI R.D. is a comparison of mass density to a standard. For solids and liquids the standard is fresh water. water.

In Imperial the corresponding quantity is specific gravity; for solids and liquids a comparison of weight density to that of

Conversions:

In both systems the same numbers hold for R.D. as for S.G. since these are equivalent ratios.

RELATIVE DENSITY (SPECIFIC GRAVITY) OF VARIOUS SUBSTANCES

Water (fresh).............. 1.00	Mica......................... 2.9
Water (sea average) 1.03	Nickel 8.6
Aluminum................. 2.56	Oil (linseed) 0.94
Antimony 6.70	Oil (olive)0.92
Bismuth.....................9.80	Oil (petroleum)0.76-0.86
Brass 8.40	Oil (turpentine) 0.87
Brick 2.1	Paraffin 0.86
Calcium..................... 1.58	Platinum.................. 21.5
Carbon (diamond)...... 3.4	Sand (dry) 1.42
Carbon (graphite)........2.3	Silicon...................... 2.6
Carbon (charcoal) 1.8	Silver...................... 10.57
Chromium.................6.5	Slate2.1-2.8
Clay.......................... 1.9	Sodium..................... 0.97
Coal.........................1.36-1.4	Steel (mild) 7.87
Cobalt 8.6	Sulphur 2.07
Copper 8.77	Tin........................... 7.3
Cork 0.24	Tungsten 19.1
Glass (crown)............. 2.5	Wood (ash) 0.75
Glass (flint)................3.5	Wood (beech)0.7-0.8
Gold 19.3	Wood (ebony)1.1-1.2
Iron (cast).................. 7.21	Wood (elm)............... 0.66
Iron (wrought) 7.78	Wood (lignum-vitae) .. 1.3
Lead 11.4	Wood (oak)0.7-1.0
Magnesium 1.74	Wood (pine)............... 0.56
Manganese................ 8.0	Wood (teak) 0.8
Mercury 13.6	Zinc.......................... 7.0

Greek Alphabet

Alpha	α	Iota	\imath
Beta	β	Kappa	κ
Gamma	γ	Lambda	λ
Delta	Δ	Mu	μ
Epsilon	ε	Nu	ν
Zeta	ζ	Xi	ξ
Eta	η	Omicron	O
Theta	θ	Pi	π

Rho	ρ
Sigma	Σ, σ
Tau	τ
Upsilon	ν
Phi	Φ, ϕ
Kai	χ
Psi	ψ
Omega	Ω, ω

MATHEMATICAL FORMULAE

Algebra

1. Expansion Formulae

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x-y)^{2}=x^{2}-2 x y+y^{2} \\
& x^{2}-y^{2}=(x-y)(x+y) \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x^{2}+y^{3} \\
& x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \\
& (x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3} \\
& x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)
\end{aligned}
$$

2. Quadratic Equation

If $a x^{2}+b x+c=0$,
Then $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 \mathrm{a}}$

Trigonometry

1. Basic Ratios

$\operatorname{Sin} \mathrm{A}=\frac{\mathrm{y}}{\mathrm{h}}, \quad \cos \mathrm{A}=\frac{\mathrm{x}}{\mathrm{h}}, \quad \tan \mathrm{A}=\frac{\mathrm{y}}{\mathrm{x}}$

2. Pythagoras' Law

$$
x^{2}+y^{2}=h^{2}
$$

3. Trigonometric Function Values

Sin is positive from 0° to 90° and positive from 90° to 180°
Cos is positive from 0° to 90° and negative from 90° to 180°
Tan is positive from 0° to 90° and negative from 90° to 180°

4. Solution of Triangles

a. Sine Law

$$
\frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C}
$$

b. Cosine Law

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \operatorname{Cos} C \\
& a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A \\
& b^{2}=a^{2}+c^{2}-2 a c \operatorname{Cos} B
\end{aligned}
$$

Geometry

1. Areas of Triangles

a. All Triangles

Area $=\frac{\text { base } \mathrm{x} \text { perpendicular height }}{2}$

$$
\text { Area }=\frac{\mathrm{bc} \operatorname{Sin} \mathrm{~A}}{2}=\frac{\mathrm{ab} \operatorname{Sin} \mathrm{C}}{2}=\frac{\mathrm{ac} \operatorname{Sin} \mathrm{~B}}{2}
$$

and,

$$
\text { Area }=\sqrt{s(s-a)(s-b)(s-c)}
$$

where, s is half the sum of the sides, or $s=\frac{a+b+c}{2}$
b. Equilateral Triangles

$$
\text { Area }=0.433 \times \text { side }^{2}
$$

2. Circumference of a Circle
$\mathrm{C}=\pi \mathrm{d}$
3. Area of a Circle
$\mathrm{A}=\pi \mathrm{r}^{2}=\frac{\text { circumference } \mathrm{xr}}{2}=\frac{\pi}{4} \mathrm{~d}^{2}=0.7854 \mathrm{~d}^{2}$
4. Area of a Sector of a Circle
$\mathrm{A}=\frac{\operatorname{arcx} \mathrm{r}}{2}$
$A=\frac{\theta^{\circ}}{360} \times \pi r^{2} \quad(\theta=$ angle in degrees $)$
$A=\frac{\theta^{\circ} r^{2}}{2} \quad(\theta=$ angle in radians $)$

5. Area of a Segment of a Circle
$A=$ area of sector - area of triangle
Also approximate area $=\frac{4}{3} h^{2} \sqrt{\frac{d}{h}-0.608}$

6. Ellipse
$\mathrm{A}=\frac{\pi}{4} \mathrm{Dd}$

Approx. circumference $=\pi \frac{(\mathrm{D}+\mathrm{d})}{2}$
7. Area of Trapezoid
$A=\left(\frac{a+b}{2}\right) h$

8. Area of Hexagon
$\mathrm{A}=2.6 \mathrm{~s}^{2}$ where s is the length of one side

9. Area of Octagon
$\mathrm{A}=4.83 \mathrm{~s}^{2}$ where s is the length of one side

10. Sphere

Total surface area $\mathrm{A}=4 \pi \mathrm{r}^{2}$
Surface area of segment $\mathrm{A}_{\mathrm{s}}=\pi \mathrm{dh}$
Volume $\mathrm{V}=\frac{4}{3} \pi \mathrm{r}^{3}$
Volume of segment
$\mathrm{V}_{\mathrm{s}}=\frac{\pi \mathrm{h}^{2}}{3}(3 \mathrm{r}-\mathrm{h})$

$V_{s}=\frac{\pi h}{6}\left(h^{2}+3 a^{2}\right)$ where $a=$ radius of segment base

11. Volume of a Cylinder

$V=\frac{\pi}{4} d^{2} L$ where L is cylinder length

12. Pyramid

Volume
$\mathrm{V}=\frac{1}{3}$ base area x perpendicular height

Volume of frustum

$\mathrm{V}_{\mathrm{F}}=\frac{\mathrm{h}}{3}(\mathrm{~A}+\mathrm{a}+\sqrt{\mathrm{Aa}})$ where h is the perpendicular height, A and a are areas as shown

13. Cone

Area of curved surface of cone:
$\mathrm{A}=\frac{\pi \mathrm{DL}}{2}$

Area of curved surface of frustum
$\mathrm{A}_{\mathrm{F}}=\frac{\pi(\mathrm{D}+\mathrm{d}) \mathrm{L}}{2}$
Volume of cone:

$\mathrm{V}=\frac{\text { base area } \times \text { perpendicular height }}{3}$
Volume of frustum:
$\mathrm{V}_{\mathrm{F}}=\frac{\text { perpendicular height } \times \pi\left(\mathrm{R}^{2}+\mathrm{r}^{2}+\mathrm{Rr}\right)}{3}$

APPLIED MECHANICS

Scalar - a property described by a magnitude only
Vector - a property described by a magnitude and a direction
Velocity - vector property equal to $\frac{\text { displacement }}{\text { time }}$
The magnitude of velocity may be referred to as speed
In SI the basic unit is $\frac{\mathrm{m}}{\mathrm{s}}$, in Imperial $\frac{\mathrm{ft}}{\mathrm{s}}$
Other common units are $\frac{\mathrm{km}}{\mathrm{h}}, \frac{\mathrm{mi}}{\mathrm{h}}$
Conversions: $\quad 1 \frac{\mathrm{~m}}{\mathrm{~s}}=3.28 \frac{\mathrm{ft}}{\mathrm{s}}$

$$
1 \frac{\mathrm{~km}}{\mathrm{~h}}=0.621 \frac{\mathrm{mi}}{\mathrm{~h}}
$$

Speed of sound in dry air is $331 \frac{\mathrm{~m}}{\mathrm{~S}}$ at $0^{\circ} \mathrm{C}$ and increases by about $0.61 \frac{\mathrm{~m}}{\mathrm{~S}}$ for each ${ }^{\circ} \mathrm{C}$ rise

Speed of light in vacuum equals $3 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
Acceleration - vector property equal to $\frac{\text { change in velocity }}{\text { time }}$
In SI the basic unit is $\frac{\mathrm{m}}{\mathrm{s}^{2}}$, in Imperial $\frac{\mathrm{ft}}{\mathrm{s}^{2}}$
Conversion: $\quad 1 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=3.28 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
Acceleration due to gravity, symbol " g ", is $9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ or $32.2 \frac{\mathrm{ft}}{\mathrm{s}^{2}}$

LINEAR VELOCITY AND ACCELERATION

$$
\begin{aligned}
& \mathrm{v}=\mathrm{u}+\mathrm{at} \\
& \mathrm{~s}=\left(\frac{\mathrm{v}+\mathrm{u}}{2}\right) \mathrm{t} \\
& \mathrm{~s}=\mathrm{ut}+\frac{1}{2} \mathrm{at}^{2} \\
& \mathrm{v}^{2}=\mathrm{u}^{2}+2 \text { as } \\
& \text { Angular Velocity and Acceleration } \\
& \theta \text { angular displacement (radians) } \\
& \omega \text { angular velocity (radians/s); } \omega_{1}=\text { initial, } \omega_{2}=\text { final } \\
& \alpha \text { angular acceleration (radians } / \mathrm{s}^{2} \text {) } \\
& \omega_{2}=\omega_{1}+\alpha t \\
& \theta=\frac{\omega_{1}+\omega_{2}}{2} \times \mathrm{t} \\
& \theta=\omega_{1} t+1 / 2 \alpha t^{2} \\
& \omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta \\
& \text { linear displacement, } s=r \theta \\
& \text { linear velocity, } \mathrm{v}=\mathrm{r} \omega \\
& \text { linear, or tangential acceleration, } \mathrm{a}_{\mathrm{T}}=\mathrm{r} \alpha
\end{aligned}
$$

Tangential, Centripetal and Total Acceleration

Tangential acceleration a_{T} is due to angular acceleration α

$$
\mathrm{a}_{\mathrm{T}}=\mathrm{r} \alpha
$$

Centripetal (Centrifugal) acceleration a_{c} is due to change in direction only

$$
a_{c}=v^{2} / r=r \omega^{2}
$$

Total acceleration, a, of a rotating point experiencing angular acceleration is the vector sum of a_{T} and a_{c}

$$
\mathrm{a}=\mathrm{a}_{\mathrm{T}}+\mathrm{a}_{\mathrm{c}}
$$

FORCE

Vector quantity, a push or pull which changes the shape and/or motion of an object
In SI the unit of force is the newton, N, defined as a $\frac{\mathrm{kg} \mathrm{m}}{\mathrm{s}^{2}}$
In Imperial the unit of force is the pound lb
Conversion: $9.81 \mathrm{~N}=2.2 \mathrm{lb}$

Weight

The gravitational force of attraction between a mass, m, and the mass of the Earth
In SI weight can be calculated from

$$
\text { Weight }=\mathrm{F}=\mathrm{mg}, \quad \text { where } \mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

In Imperial, the mass of an object (rarely used), in slugs, can be calculated from the known weight in pounds

$$
\mathrm{m}=\frac{\text { Weight }}{\mathrm{g}} \quad \mathrm{~g}=32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}
$$

Newton's Second Law of Motion

An unbalanced force F will cause an object of mass m to accelerate a , according to:

$$
\mathrm{F}=\mathrm{ma} \quad\left(\text { Imperial } \mathrm{F}=\frac{\mathrm{W}}{\mathrm{~g}} \mathrm{a}, \text { where } \mathrm{w} \text { is weight }\right)
$$

Torque Equation

$$
\mathrm{T}=\mathrm{I} \alpha \quad \text { where } \mathrm{T} \text { is the acceleration torque in } \mathrm{Nm}, \mathrm{I} \text { is the moment of inertia in } \mathrm{kg} \mathrm{~m}^{2}
$$ and α is the angular acceleration in radians $/ \mathrm{s}^{2}$

Momentum

Vector quantity, symbol p,

$$
\mathrm{p}=\mathrm{mv} \quad \text { (Imperial } \mathrm{p}=\frac{\mathrm{w}}{\mathrm{~g}} \mathrm{v}, \text { where } \mathrm{w} \text { is weight) }
$$

in SI unit is $\frac{\mathrm{kg} \mathrm{m}}{\mathrm{S}}$

Work

Scalar quantity, equal to the (vector) product of a force and the displacement of an object. In simple systems, where W is work, F force and s distance

$$
\mathrm{W}=\mathrm{Fs}
$$

In SI the unit of work is the joule, J, or kilojoule, kJ
$1 \mathrm{~J}=1 \mathrm{Nm}$

In Imperial the unit of work is the ft-lb

Energy

Energy is the ability to do work, the units are the same as for work; J, kJ, and ft-lb

Kinetic Energy

Energy due to motion

$$
\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{mv}^{2}
$$

In Imperial this is usually expressed as $E_{k}=\frac{W}{2 g} v^{2}$ where w is weight

Kinetic Energy of Rotation

$E_{R}=\frac{1}{2} \mathrm{mk}^{2} \omega^{2}$ where k is radius of gyration, ω is angular velocity in rad/s
or
$\mathrm{E}_{\mathrm{R}}=\frac{1}{2} \mathrm{I} \omega^{2} \quad$ where $\mathrm{I}=\mathrm{mk}^{2}$ is the moment of inertia

CENTRIPETAL (CENTRIFUGAL) FORCE

$$
\mathrm{F}_{\mathrm{C}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \quad \text { where } \mathrm{r} \text { is the radius }
$$

or

$$
\mathrm{F}_{\mathrm{C}}=\mathrm{m} \omega^{2} \mathrm{r} \quad \text { where } \omega \text { is angular velocity in } \mathrm{rad} / \mathrm{s}
$$

Potential Energy

Energy due to position in a force field, such as gravity

$$
E_{p}=m g h
$$

In Imperial this is usually expressed $\mathrm{E}_{\mathrm{p}}=\mathrm{wh}$ where w is weight, and h is height above some specified datum

Thermal Energy

In SI the common units of thermal energy are J , and kJ , (and $\mathrm{kJ} / \mathrm{kg}$ for specific quantities)
In Imperial, the units of thermal energy are British Thermal Units (Btu)
Conversions: $\quad 1 \mathrm{Btu}=1055 \mathrm{~J}$
$1 \mathrm{Btu}=778 \mathrm{ft}-\mathrm{lb}$

Electrical Energy

In SI the units of electrical energy are J, kJ and kilowatt hours kWh . In Imperial, the unit of electrical energy is the kWh

Conversions: $\quad 1 \mathrm{kWh}=3600 \mathrm{~kJ}$

$$
1 \mathrm{kWh}=3412 \mathrm{Btu}=2.66 \times 10^{6} \mathrm{ft}-\mathrm{lb}
$$

Power

A scalar quantity, equal to the rate of doing work
In SI the unit is the Watt W (or kW)
$1 \mathrm{~W}=1 \frac{\mathrm{~J}}{\mathrm{~S}}$
In Imperial, the units are:
Mechanical Power - $\frac{\mathrm{ft}-\mathrm{lb}}{\mathrm{s}}$, horsepower h.p.
Thermal Power - $\quad \frac{B t u}{\mathrm{~s}}$
Electrical Power - $\quad \mathrm{W}, \mathrm{kW}$, or h.p.
Conversions: $\quad 746 \mathrm{~W}=1 \mathrm{~h} . \mathrm{p}$.

$$
1 \text { h.p. }=550 \frac{\mathrm{ft}-\mathrm{lb}}{\mathrm{~s}}
$$

$1 \mathrm{~kW}=0.948 \frac{\mathrm{Btu}}{\mathrm{S}}$

Pressure

A vector quantity, force per unit area
In SI the basic units of pressure are pascals Pa and kPa

$$
1 \mathrm{~Pa}=1 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
$$

In Imperial, the basic unit is the pound per square inch, psi

Atmospheric Pressure

At sea level atmospheric pressure equals 101.3 kPa or 14.7 psi

Pressure Conversions

$$
1 \mathrm{psi}=6.895 \mathrm{kPa}
$$

Pressure may be expressed in standard units, or in units of static fluid head, in both SI and Imperial systems

Common equivalencies are:
$1 \mathrm{kPa}=0.294 \mathrm{in}$. mercury $=7.5 \mathrm{~mm}$ mercury
$1 \mathrm{kPa}=4.02$ in. water $=102 \mathrm{~mm}$ water
$1 \mathrm{psi}=2.03 \mathrm{in}$. mercury $=51.7 \mathrm{~mm}$ mercury
$1 \mathrm{psi}=27.7 \mathrm{in}$. water $=703 \mathrm{~mm}$ water
$1 \mathrm{~m} \mathrm{H}_{2} \mathrm{O}=9.81 \mathrm{kPa}$
Other pressure unit conversions:
$1 \mathrm{bar}=14.5 \mathrm{psi}=100 \mathrm{kPa}$
$1 \mathrm{~kg} / \mathrm{cm}^{2}=98.1 \mathrm{kPa}=14.2 \mathrm{psi}=0.981 \mathrm{bar}$
$1 \mathrm{atmosphere}(\mathrm{atm})=101.3 \mathrm{kPa}=14.7 \mathrm{psi}$

Simple Harmonic Motion

Velocity of $P=\omega \sqrt{R^{2}-x^{2}} \frac{m}{s}$
Acceleration of $\mathrm{P}=\omega^{2} \times \mathrm{m} / \mathrm{s}^{2}$
The period or time of a complete oscillation $=\frac{2 \pi}{\omega}$ seconds

General formula for the period of S.H.M.

$$
\mathrm{T}=2 \pi \sqrt{\frac{\text { displacement }}{\text { acceleration }}}
$$

Simple Pendulum

$$
\begin{aligned}
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}} \quad \mathrm{~T}=\text { period or time in seconds for a double swing } \\
\mathrm{L}=\text { length in metres }
\end{aligned}
$$

The Conical Pendulum

$\mathrm{R} / \mathrm{H}=\tan \theta=\mathrm{F}_{\mathrm{c}} / \mathrm{W}=\omega^{2} \mathrm{R} / \mathrm{g}$

Lifting Machines

$\mathrm{W}=$ load lifted,$\quad \mathrm{F}=$ force applied
M.A. $=\frac{\text { load }}{\text { effort }}=\frac{\mathrm{W}}{\mathrm{F}}$
V.R. (velocity ratio) $=\frac{\text { effort distance }}{\text { load distance }}$
$\eta=$ efficiency $=\frac{\text { M.A. }}{\text { V.R. }}$

1. Lifting Blocks

V.R. = number of rope strands supporting the load block
2. Wheel \& Differential Axle

$$
\begin{aligned}
\text { Velocity ratio } & =\frac{2 \pi \mathrm{R}}{\frac{2 \pi\left(\mathrm{r}-\mathrm{r}_{1}\right)}{2}} \\
& =\frac{2 \mathrm{R}}{\mathrm{r}-\mathrm{r}_{1}} 2 \mathrm{R}
\end{aligned}
$$

Or, using diameters instead of radii,

Velocity ratio $=\frac{2 D}{\left(d-d_{1}\right)}$

3. Inclined Plane

$$
\text { V.R. }=\frac{\text { length }}{\text { height }}
$$

4. Screw Jack
V.R. $=\frac{\text { circumference of leverage }}{\text { pitch of thread }}$

Indicated Power

I.P. $=P_{m}$ A L N where I.P. is power in $\mathrm{W}, \mathrm{P}_{\mathrm{m}}$ is mean or "average" effective pressure in Pa, A is piston area in m^{2}, L is length of stroke in m and N is number of power strokes per second

Brake Power

B.P. $=\mathrm{T} \omega \quad$ where B.P. is brake power in W, T is torque in Nm and ω is angular velocity in radian/second

STRESS, STRAIN and MODULUS OF ELASTICITY

Direct stress $=\frac{\text { load }}{\text { area }}=\frac{\mathrm{P}}{\mathrm{A}}$
Direct strain $=\frac{\text { extension }}{\text { original length }}=\frac{\Delta \ell}{L}$

Modulus of elasticity

$$
\mathrm{E}=\frac{\text { direct stress }}{\text { direct strain }}=\frac{\mathrm{P} / \mathrm{A}}{\Delta \ell / \mathrm{L}}=\frac{\mathrm{PL}}{\mathrm{~A} \Delta \ell}
$$

Shear stress $\tau=\frac{\text { force }}{\text { area under shear }}$

Shear strain $=\frac{X}{L}$

Modulus of rigidity

$$
\mathrm{G}=\frac{\text { shear stress }}{\text { shear strain }}
$$

General Torsion Equation (Shafts of circular cross-section)

$$
\frac{\mathrm{T}}{\mathrm{~J}}=\frac{\tau}{\mathrm{r}}=\frac{\mathrm{G} \theta}{\mathrm{~L}}
$$

1. For Solid Shaft

$$
\mathrm{J}=\frac{\pi}{2} \mathrm{r}^{4}=\frac{\pi \mathrm{d}^{4}}{32}
$$

2. For Hollow Shaft

$$
\begin{aligned}
\mathrm{J} & =\frac{\pi}{2}\left(\mathrm{r}_{1}^{4}-\mathrm{r}_{2}^{4}\right) \\
& =\frac{\pi}{32}\left(\mathrm{~d}_{1}^{4}-\mathrm{d}_{2}^{4}\right)
\end{aligned}
$$

$\mathrm{T}=$ torque or twisting moment in newton metres
$\mathrm{J}=$ polar second moment of area of cross-section about shaft axis.
$\tau=$ shear stress at outer fibres in pascals
$\mathrm{r}=$ radius of shaft in metres
$\mathrm{G}=$ modulus of rigidity in pascals
$\theta=$ angle of twist in radians
$\mathrm{L}=$ length of shaft in metres
$\mathrm{d}=$ diameter of shaft in metres

Relationship Between Bending Stress and External Bending Moment

$$
\frac{\mathrm{M}}{\mathrm{I}}=\frac{\sigma}{\mathrm{y}}=\frac{\mathrm{E}}{\mathrm{R}}
$$

1. For Rectangle

$\mathrm{M}=$ external bending moment in newton metres
$\mathrm{I}=$ second moment of area in m^{4}
$\sigma=$ bending stress at outer fibres in pascals
$\mathrm{y}=$ distance from centroid to outer fibres in metres
$\mathrm{E}=$ modulus of elasticity in pascals
$\mathrm{R}=$ radius of currative in metres

2. For Solid Shaft

$$
\mathrm{I}=\frac{\pi \mathrm{D}^{4}}{64}
$$

THERMODYNAMICS

Temperature Scales

$$
\begin{array}{ll}
{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right) & { }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32 \\
{ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+460 \text { (R Rankine) } & \mathrm{K}={ }^{\circ} \mathrm{C}+273 \text { (K Kelvin) }
\end{array}
$$

Sensible Heat Equation

$\mathrm{Q}=\operatorname{mc} \Delta \mathrm{T}$
m is mass
c is specific heat
$\Delta \mathrm{T}$ is temperature change

Latent Heat

Latent heat of fusion of ice $=335 \mathrm{~kJ} / \mathrm{kg}$
Latent heat of steam from and at $100^{\circ} \mathrm{C}=2257 \mathrm{~kJ} / \mathrm{kg}$
1 tonne of refrigeration $=335000 \mathrm{~kJ} /$ day
$=233 \mathrm{~kJ} / \mathrm{min}$

Gas Laws

1. Boyle's Law

When gas temperature is constant
PV $=$ constant or
$P_{1} V_{1}=P_{2} V_{2}$
where P is absolute pressure and V is volume

2. Charles' Law

When gas pressure is constant, $\frac{\mathrm{V}}{\mathrm{T}}=$ constant
or $\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$, where V is volume and T is absolute temperature

3. Gay-Lussac's Law

When gas volume is constant, $\frac{\mathrm{P}}{\mathrm{T}}=$ constant

Or $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$, where P is absolute pressure and T is absolute temperature

4. General Gas Law

$$
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}=\text { constant }
$$

$\mathrm{P} V=\mathrm{mRT} \quad$ where $\mathrm{P}=$ absolute pressure (kPa)
$\mathrm{V}=$ volume (m^{3})
$\mathrm{T}=$ absolute temp (K)
$\mathrm{m}=\operatorname{mass}(\mathrm{kg})$
$\mathrm{R}=$ characteristic constant $(\mathrm{kJ} / \mathrm{kgK})$
Also

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nR}_{\mathrm{o}} \mathrm{~T} \quad \text { where } \mathrm{P}=\text { absolute pressure }(\mathrm{kPa}) \\
& \mathrm{V}=\text { volume }\left(\mathrm{m}^{3}\right) \\
& \mathrm{T}=\text { absolute temperature } \mathrm{K} \\
& \mathrm{~N}=\text { the number of kmoles of gas } \\
& \mathrm{R}_{\mathrm{o}}=\text { the universal gas constant } 8.314 \mathrm{~kJ} / \mathrm{kmol} / \mathrm{K}
\end{aligned}
$$

SPECIFIC HEATS OF GASES

GAS	Specific Heat at Constant Pressure $\mathbf{k J / k g K}$ $\mathbf{o r}$ $\mathbf{k J} / \mathbf{k g}{ }^{\circ} \mathbf{C}$	Specific Heat at Constant Volume $\mathbf{k J / k g K}$ $\mathbf{o r}$ $\mathbf{k J / k g}{ }^{\circ} \mathbf{C}$	Ratio of Specific Heats $\boldsymbol{\gamma}=\mathbf{c}_{\mathbf{p}} / \mathbf{c}_{\mathbf{v}}$
Air	1.005	0.718	
Ammonia	2.060	1.561	1.40
Carbon Dioxide	0.825	0.630	1.32
Carbon Monoxide	1.051	0.751	1.31
Helium	5.234	3.153	1.40
Hydrogen	14.235	10.096	1.66
Hydrogen Sulphide	1.105	0.85	1.41
Methane	2.177	1.675	1.30
Nitrogen	1.043	0.745	1.30
Oxygen	0.913	0.652	1.40
Sulphur Dioxide	0.632	0.451	1.40

Efficiency of Heat Engines

Carnot Cycle $\eta=\frac{T_{1}-T_{2}}{T_{1}} \quad$ where T_{1} and T_{2} are absolute temperatures of heat source and sink

Air Standard Efficiencies

1. Spark Ignition Gas and Oil Engines (Constant Volume Cycle or Otto Cycle)

$$
\begin{aligned}
\eta=1-\frac{1}{r_{v}^{(\gamma-1)}} \quad \text { where } r_{v} & =\text { compression ratio }=\frac{\text { cylinder volume }}{\text { clearance volume }} \\
\gamma & =\frac{\text { specific heat (constant pressure) }}{\text { specific heat (constant volume) }}
\end{aligned}
$$

2. Diesel Cycle

$\eta=1-\frac{\left(\mathrm{R}^{\gamma}-1\right)}{\mathrm{r}_{\mathrm{v}}^{\gamma-1} \gamma(\mathrm{R}-1)} \quad$ where $\mathrm{r}=$ ratio of compression

$$
\mathrm{R}=\text { ratio of cut-off volume to clearance volume }
$$

3. High Speed Diesel (Dual-Combustion) Cycle

$\eta=1-\frac{\mathrm{k} \beta^{\gamma}-1}{\mathrm{r}_{\mathrm{v}}^{\gamma-1}[(\mathrm{k}-1)+\gamma \mathrm{k}(\beta-1)]}$
where $r_{v}=\frac{\text { cylinder volume }}{\text { clearance volume }}$

$$
\begin{aligned}
& \mathrm{k}=\frac{\text { absolute pressue at end of constant } \mathrm{V} \text { heating (combustion) }}{\text { absolute pressue at beginning of constant } \mathrm{V} \text { combustion }} \\
& \beta=\frac{\text { volume at end of constant } \mathrm{P} \text { heating (combustion) }}{\text { clearance volume }}
\end{aligned}
$$

4. Gas Turbines (Constant Pressure or Brayton Cycle)
$\eta=1-\frac{1}{\mathrm{r}_{\mathrm{p}}^{\left(\frac{\gamma-1}{\gamma}\right)}}$
where $r_{p}=$ pressure ratio $=\frac{\text { compressor discharge pressure }}{\text { compressor intake pressure }}$
THERMODYNAMIC EQUATIONS FOR PERFECT GASES (Non_Flow Processes)

Name of Process	$\underset{n}{\left\lvert\, \begin{array}{c} \text { Value of } \end{array}\right.}$	$P-V-T$ Relationships				Work Done$\underset{\mathrm{kJ}}{1}{ }_{2}$		Change In $\mathrm{H}_{2}-\mathrm{HJ}_{l}$	Change In Entropy kJ/K
		$P-V$	$T-P$	T-V					
$\begin{aligned} & \text { Constant } \\ & \text { Volume } \\ & V=\text { Const. } \end{aligned}$	∞	-	$\frac{T_{1}}{T_{2}}=\frac{P_{1}}{P_{2}}$	-	$m c_{v}\left(T_{2}-T_{1}\right)$	0	$m c_{v}\left(T_{2}-T_{1}\right)$	$m c_{p}\left(T_{2}-T_{1}\right)$	$m c v \operatorname{loge} \frac{T_{2}}{T_{I}}$
Constant Pressure $P=$ Const.	0	-	-	$\frac{T_{1}}{T_{2}}=\frac{V_{1}}{V_{2}}$	$m c_{p}\left(T_{2}-T_{1}\right)$	$P\left(V_{2}-V_{1}\right)$	$m c v\left(T_{2}-T_{l}\right)$	$m c_{p}\left(T_{2}-T_{1}\right)$	$m c_{p} \operatorname{loge} \frac{T_{2}}{T_{1}}$
$\begin{aligned} & \text { Isothermal } \\ & T=\text { Const. } \end{aligned}$	1	$\frac{P_{1}}{P_{2}}=\frac{V_{2}}{V_{1}}$	-	-	m mT loge $\frac{P_{1}}{P_{2}}$	$m R T \text { loge } \frac{P_{1}}{P_{2}}$	0	0	${ }^{2} R \operatorname{loge}^{\frac{P_{1}}{}} \frac{P_{2}}{}$
$\begin{aligned} & \text { Isentropic }^{*} \\ & S=\text { Const. } \end{aligned}$	γ	$\frac{P_{1}}{P_{2}}=\left(\frac{V_{2}}{V_{1}}\right)$	$\frac{T_{1}}{T_{2}}=\left(\frac{P_{1}}{P_{2}}\right)$	$\frac{T_{1}}{T_{2}}=\left(\frac{V_{2}}{V_{1}}\right)$	0	$m c_{v}\left(T_{1}-T_{2}\right)$	$m \mathrm{cv}\left(T_{2}-T_{1}\right)$	$m c_{p}\left(T_{2}-T_{1}\right)$	0
$\begin{aligned} & \text { Polytropic } \\ & P V^{n}=\text { Const. } \end{aligned}$	n	$\frac{P_{1}}{P_{2}}=\left(\frac{V_{2}}{V_{1}}\right)^{n}$	$\frac{T_{I}}{T_{2}}=\left(\frac{P_{1}}{P_{2}}\right)^{\frac{n}{n}}$	$\frac{T_{1}}{T_{2}}=\left(\frac{V_{2}}{V_{1}}\right)$	$m c_{n}\left(T_{2}-T_{1}\right)$	$\frac{m R}{n-1}\left(T_{1}-T_{2}\right)$	$m c_{v}\left(T_{2}-T_{1}\right)$	$m c_{p}\left(T_{2}-T_{1}\right)$	$m c n \operatorname{loge} \frac{T_{2}}{T_{1}}$

[^0]
Heat Transfer by Conduction

$$
\begin{aligned}
\mathrm{Q}= & \frac{\lambda \mathrm{At} \Delta \mathrm{~T}}{\mathrm{~d}} \\
\text { where } \mathrm{Q}= & \text { heat transferred in joules } \\
\lambda= & \text { thermal conductivity or coeficient of heat } \\
& \text { transfer in } \frac{\mathrm{J} \times \mathrm{m}}{\mathrm{~m}^{2} \times \mathrm{s} \times{ }^{\circ} \mathrm{C}} \text { or } \frac{\mathrm{W}}{\mathrm{~m} \times{ }^{\circ} \mathrm{C}} \\
\mathrm{~A}= & \text { area in } \mathrm{m}^{2} \\
\mathrm{t}= & \text { time in seconds } \\
\Delta \mathrm{T}= & \text { temperature difference between surfaces in }{ }^{\circ} \mathrm{C} \\
\mathrm{~d}= & \text { thickness of layer in } \mathrm{m}
\end{aligned}
$$

COEFFICIENTS OF THERMAL CONDUCTIVITY

Material

$$
0.025
$$

206
Aluminum
104
Brick 0.6

Brass
Concrete 0.85
Copper 380Cork
Felt0.043Glass1.0
Glass, fibre 0.04
Iron, cast 70
Plastic, cellular 0.04
Steel 60
Wood 0.15
Wallboard, paper 0.076

0.076

Coefficient of Thermal Conductivity
W/m ${ }^{\circ} \mathbf{C}$

Air
Brick

Thermal Expansion of Solids

Increase in length $=\mathrm{L} \alpha\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
where $\quad \mathrm{L}=$ original length
$\alpha=$ coefficient of linear expansion
$\left(T_{2}-T_{1}\right)=$ rise in temperature
Increase in volume $=\mathrm{V} \beta\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
Where $\quad \mathrm{V}=$ original volume
$\beta=$ coefficient of volumetric expansion
$\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=$ rise in temperature
coefficient of volumetric expansion $=$ coefficient of linear expansion $\times 3$

$$
\beta=3 \alpha
$$

SPECIFIC HEAT and LINEAR EXPANSION OF SOLIDS

Solid	Mean Specific Heat between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ $\mathrm{kJ} / \mathrm{kgK}$ or $\mathrm{kJ} / \mathrm{kg}^{\circ} \mathrm{C}$	Coefficient of Linear Expansion between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ (Multiply by 10^{-6})	Solid	Mean Specific Heat between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ $\mathbf{k J} / \mathrm{kgK}$ or $\mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$	Coefficient of Linear Expansion between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ (Multiply by 10^{-6})
Aluminum	0.909	23.8	Iron (cast)	0.544	10.4
Antimony	0.209	17.5	Iron (wrought)	0.465	12.0
Bismuth	0.125	12.4	Lead	0.131	29.0
Brass	0.383	18.4	Nickel	0.452	13.0
Carbon	0.795	7.9	Platinum	0.134	8.6
Cobalt	0.402	12.3	Silicon	0.741	7.8
Copper	0.388	16.5	Silver	0.235	19.5
Glass	0.896	9.0	Steel (mild)	0.494	12.0
Gold	0.130	14.2	Tin	0.230	26.7
Ice (between - $20^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$)	2.135	50.4	Zinc	0.389	16.5

SPECIFIC HEAT and VOLUME EXPANSION FOR LIQUIDS

Liquid	$\begin{gathered} \text { Specific Heat } \\ \left(\text { at } 20^{\circ} \mathbf{C}\right) \\ \mathbf{k J} / \operatorname{kgK} \text { or } \mathbf{k J} / \mathbf{k g}^{\circ} \mathbf{C} \end{gathered}$	Coefficient of Volume Expansion (Multiply by 10^{-4})	Liquid	$\begin{gathered} \text { Specific Heat } \\ \left(\text { at } 20^{\circ}\right) \\ \mathbf{k J} / \mathbf{k g K} \text { or } \mathbf{k J} / \mathbf{k g}^{\circ} \mathbf{C} \end{gathered}$	Coefficient of Volume Expansion (Multiply by $\mathbf{1 0}^{-4}$)
Alcohol (ethyl)	2.470	11.0	Olive Oil	1.633	
Ammonia	0.473		Petroleum	2.135	
Benzine	1.738	12.4	Gasoline	2.093	12.0
Carbon Dioxide	3.643	1.82	Turpentine	1.800	9.4
Mercury	0.139	1.80	Water	4.183	3.7

Chemical Heating Value of a Fuel

Chemical Heating Value MJ per kg of fuel $=33.7 \mathrm{C}+144\left(\mathrm{H}_{2}-\frac{\mathrm{O}_{2}}{8}\right)+9.3 \mathrm{~S}$
C is the mass of carbon per kg of fuel
H_{2} is the mass of hydrogen per kg of fuel
O_{2} is the mass of oxygen per kg of fuel
S is the mass of sulphur per kg of fuel

Theoretical Air Required to Burn Fuel

Air $(\mathrm{kg}$ per kg of fuel $)=\left[\frac{8}{3} \mathrm{C}+8\left(\mathrm{H}_{2}-\frac{\mathrm{O}_{2}}{8}\right)+\mathrm{S}\right] \frac{100}{23}$

Air Supplied from Analysis of Flue Gases

Air in kg per kg of fuel $=\frac{\mathrm{N}_{2}}{33\left(\mathrm{CO}_{2}+\mathrm{CO}\right)} \times \mathrm{C}$
C is the percentage of carbon in fuel by mass
N_{2} is the percentage of nitrogen in flue gas by volume
CO_{2} is the percentage of carbon dioxide in flue gas by volume
CO is the percentage of carbon monoxide in flue gas by volume

Boiler Formulae

Equivalent evaporation $=\frac{\dot{\mathrm{m}}_{\mathrm{s}}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)}{2257 \mathrm{~kJ} / \mathrm{kg}}$
Factor of evaporation $=\frac{\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)}{2257 \mathrm{~kJ} / \mathrm{kg}}$

Boiler efficiency $=\frac{\dot{\mathrm{m}}_{\mathrm{s}}\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right)}{\dot{\mathrm{m}}_{\mathrm{f}} \mathrm{x} \text { calorific value of fuel }}$
where $\dot{\mathrm{m}}_{\mathrm{s}}=$ mass flow rate of steam
$\mathrm{h}_{1}=$ enthalpy of steam produced in boiler
$h_{2}=$ enthalpy of feedwater to boiler
$\dot{\mathrm{m}}_{\mathrm{f}}=$ mass flow rate of fuel

FLUID MECHANICS

Discharge from an Orifice

Let $\mathrm{A}=$ cross-sectional area of the orifice $=(\pi / 4) \mathrm{d}^{2}$
and $\mathrm{A}_{\mathrm{c}}=$ cross-sectional area of the jet at the vena conrtacta $=\left((\pi / 4) \mathrm{d}_{\mathrm{c}}^{2}\right.$
then $\mathrm{A}_{\mathrm{c}}=\mathrm{C}_{\mathrm{c}} \mathrm{A}$
or $\mathrm{C}_{\mathrm{c}} \quad=\quad \frac{\mathrm{A}_{\mathrm{c}}}{\mathrm{A}}=\left(\frac{\mathrm{d}_{\mathrm{c}}}{\mathrm{d}}\right)^{2}$
where C_{c} is the coefficient of contraction

At the vena contracta, the volumetric flow rate Q of the fluid is given by

$$
\begin{aligned}
\mathrm{Q} & =\text { area of the jet at the vena contracta } \times \text { actual velocity } \\
& =\mathrm{A}_{\mathrm{c}} \mathrm{v} \\
\text { or } \mathrm{Q} & =\mathrm{C}_{\mathrm{c}} \mathrm{AC}_{\mathrm{v}} \sqrt{2 \mathrm{gh}}
\end{aligned}
$$

The coefficients of contraction and velocity are combined to give the coefficient of discharge, C_{d}

$$
\begin{aligned}
& \text { i.e. } C_{d}=C_{c} C_{v} \\
& \text { and } Q=C_{d} A \sqrt{2 g h}
\end{aligned}
$$

Typically, values for C_{d} vary between 0.6 and 0.65
Circular orifice: $\mathrm{Q}=0.62 \mathrm{~A} \sqrt{2 \mathrm{gh}}$
Where $\mathrm{Q}=$ flow $\left(\mathrm{m}^{3} / \mathrm{s}\right) \quad \mathrm{A}=\operatorname{area}\left(\mathrm{m}^{2}\right) \mathrm{h}=$ head (m)
Rectangular notch: $\mathrm{Q}=0.62(\mathrm{Bx} \mathrm{H}) \frac{2}{3} \sqrt{2 \mathrm{gh}}$
Where $B=$ breadth (m) $H=$ head $(m$ above sill $)$
Triangular Right Angled Notch: $\mathrm{Q}=2.635 \mathrm{H}^{5 / 2}$
Where $\mathrm{H}=$ head (m above sill)

Bernoulli's Theory

$H=h+\frac{P}{w}+\frac{v^{2}}{2 g}$
$\mathrm{H}=$ total head (metres) $\quad \mathrm{w}=$ force of gravity on $1 \mathrm{~m}^{3}$ of fluid (N)
$\mathrm{h}=$ height above datum level (metres) $\quad \mathrm{v}=$ velocity of water (metres per second)
$\mathrm{P}=$ pressure $\left(\mathrm{N} / \mathrm{m}^{2}\right.$ or Pa$)$

Loss of Head in Pipes Due to Friction

Loss of head in metres $=f \frac{L}{d} \frac{v^{2}}{2 g}$
$\mathrm{L}=$ length in metres $\quad \mathrm{v}=$ velocity of flow in metres per second
$\mathrm{d}=$ diameter in metres $\quad \mathrm{f}=$ constant value of 0.01 in large pipes to 0.02 in small pipes

Note: This equation is expressed in some textbooks as Loss $=4 f \frac{L}{d} \frac{v^{2}}{2 g}$ where the f values range from 0.0025 to 0.005

Actual Pipe Dimensions

Nominal Pipe Size (in)	Outside Diameter (mm)	Inside Diameter (mm)	```Wall Thickness (mm)```	Flow Area (m^{2})
$\frac{1}{8}$	10.3	6.8	1.73	3.660×10^{-5}
$\frac{1}{4}$	13.7	9.2	2.24	6.717×10^{-5}
$\frac{3}{8}$	17.1	12.5	2.31	1.236×10^{-4}
$\frac{1}{2}$	21.3	15.8	2.77	1.960×10^{-4}
$\frac{3}{4}$	26.7	20.9	2.87	3.437×10^{-4}
1	33.4	26.6	3.38	5.574×10^{-4}
$1 \frac{1}{4}$	42.2	35.1	3.56	9.653×10^{-4}
$1 \frac{1}{2}$	48.3	40.9	3.68	1.314×10^{-3}
2	60.3	52.5	3.91	2.168×10^{-3}
$2 \frac{1}{2}$	73.0	62.7	5.16	3.090×10^{-3}
3	88.9	77.9	5.49	4.768×10^{-3}
$3 \frac{1}{2}$	101.6	90.1	5.74	6.381×10^{-3}
4	114.3	102.3	6.02	8.213×10^{-3}
5	141.3	128.2	6.55	1.291×10^{-2}
6	168.3	154.1	7.11	1.864×10^{-2}
8	219.1	202.7	8.18	3.226×10^{-2}
10	273.1	254.5	9.27	5.090×10^{-2}
12	323.9	303.2	10.31	7.219×10^{-2}
14	355.6	333.4	11.10	8.729×10^{-2}
16	406.4	381.0	12.70	0.1140
18	457.2	428.7	14.27	0.1443
20	508.0	477.9	15.06	0.1794
24	609.6	574.7	17.45	0.2594

ELECTRICITY

Ohm's Law

$$
I=\frac{E}{R}
$$

or

$$
\mathrm{E}=\mathrm{IR}
$$

where $\mathrm{I}=$ current (amperes)
$\mathrm{E}=$ electromotive force (volts)
$\mathrm{R}=$ resistance (ohms)

Conductor Resistivity

$R=\rho \frac{L}{a}$
where $\quad \rho=$ specific resistance (or resistivity) (ohm metres, $\Omega \cdot \mathrm{m}$)
$\mathrm{L}=$ length (metres)
$\mathrm{a}=$ area of cross-section (square metres)
Temperature correction
$R_{t}=R_{0}(1+\alpha t)$
where $\mathrm{R}_{0}=$ resistance at $0^{\circ} \mathrm{C}(\Omega)$
$\mathrm{R}_{\mathrm{t}}=$ resistance at $\mathrm{t}^{\circ} \mathrm{C}(\Omega)$
$\alpha=\quad$ temperature coefficient which has an average value for copper of 0.00428 $\left(\Omega / \Omega^{\circ} \mathrm{C}\right)$
$\mathrm{R}_{2}=\mathrm{R}_{1} \frac{\left(1+\alpha \mathrm{t}_{2}\right)}{\left(1+\alpha \mathrm{t}_{1}\right)}$
where $\mathrm{R}_{1}=$ resistance at $\mathrm{t}_{1}(\Omega)$
$\mathrm{R}_{2}=$ resistance at $\mathrm{t}_{2}(\Omega)$

α Values	$\Omega / \Omega^{\circ} \mathrm{C}$
copper	0.00428
platinum	0.00385
nickel	0.00672
tungsten	0.0045
aluminum	0.0040

Dynamo Formulae

Average e.m.f. generated in each conductor $=\frac{2 \Phi \mathrm{NpZ}}{60 \mathrm{c}}$
where $\mathrm{Z}=$ total number of armature conductors
$\mathrm{c}=$ number of parallel paths through winding between positive and negative brushes where $\mathrm{c}=2$ (wave winding), $\mathrm{c}=2 \mathrm{p}$ (lap winding)
$\Phi=$ useful flux per pole (webers), entering or leaving the armature
$\mathrm{p}=$ number of pairs of poles
$\mathrm{N}=$ speed (revolutions per minute)
Generator Terminal volts $=\mathrm{E}_{\mathrm{G}}-\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}$
Motor Terminal volts $=E_{B}+I_{a} R_{a}$
where $\mathrm{E}_{\mathrm{G}}=$ generated e.m.f.
$\mathrm{E}_{\mathrm{B}}=$ generated back e.m.f.
$\mathrm{I}_{\mathrm{a}}=$ armature current
$\mathrm{R}_{\mathrm{a}}=$ armature resistance

Alternating Current

R.M.S. value of sine curve $=0.707$ maximum value

Mean value of sine curve $=0.637$ maximum value
Form factor of sinusoidal $=\frac{\text { R.M.S. value }}{\text { Mean value }}=\frac{0.707}{0.637}=1.11$

Frequency of alternator $=\frac{\mathrm{pN}}{60}$ cycles per second

Where $\mathrm{p}=$ number of pairs of poles
$\mathrm{N}=$ rotational speed in $\mathrm{r} / \mathrm{min}$

Slip of Induction Motor

$\frac{\text { Slip speed of field }- \text { speed of rotor }}{\text { Speed of field }} \times 100$

Inductive Reactance

Reactance of AC circuit $(\mathrm{X})=2 \pi \mathrm{fL}$ ohms
where $\mathrm{L}=$ inductance of circuit (henries)
Inductance of an iron cored solenoid $=\frac{1.256 \mathrm{~T}^{2} \mu \mathrm{~A}}{\mathrm{~L} \times 10^{8}}$ henries
where $\mathrm{T}=$ turns on coil
$\mu=$ magnetic permeablility of core
$\mathrm{A}=$ area of core (square centimetres)
$\mathrm{L}=$ length (centimetres)

Capacitance Reactance

Capacitance reactance of AC circuit $=\frac{1}{2 \pi \mathrm{fC}}$ ohms
where

$$
\mathrm{C}=\text { capacitance (farads) }
$$

Total reactance $=\left(2 \pi \mathrm{fL}-\frac{1}{2 \pi \mathrm{fC}}\right)$ ohms
Impedence $(Z)=\sqrt{(\text { resistance })^{2}+(\text { reactance })^{2}}$

$$
=\sqrt{\mathrm{R}^{2}+\left(2 \pi \mathrm{fL}-\frac{1}{2 \pi \mathrm{fC}}\right)^{2} \mathrm{ohms}}
$$

Current in AC Circuit

Current $=\frac{\text { impressed volts }}{\text { impedance }}$

Power Factor

$$
\text { p.f. }=\frac{\text { true watts }}{\text { volts } \mathrm{x} \text { amperes }}
$$

also p.f. $=\cos \Phi, \quad$ where Φ is the angle of lag or lead

Three Phase Alternators

Star connected
Line voltage $=\sqrt{3} \times$ phase voltage
Line current $=$ phase current
Delta connected
Line voltage $=$ phase voltage
Line current $=\sqrt{3} \times$ phase current
Three phase power

$$
\begin{aligned}
\mathrm{P} & =\sqrt{3} \mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \Phi \\
\mathrm{E}_{\mathrm{L}} & =\text { line voltage } \\
\mathrm{I}_{\mathrm{L}} & =\text { line current } \\
\cos \Phi & =\text { power factor }
\end{aligned}
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Group \& $$
\begin{gathered}
1 \\
\mathrm{IA} \\
\hline
\end{gathered}
$$ \& $$
\begin{aligned}
& 2 \\
& I I A \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& 3 \mathrm{IIIB} \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& 4 \\
& \text { IVB }
\end{aligned}
$$ \& $$
\begin{aligned}
& 5 \\
& \text { VB }
\end{aligned}
$$ \& $$
\begin{aligned}
& { }_{6}^{6} \mid \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& 7 \mathrm{FIIB} \\
& \text { VIB }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { VIIIB }
\end{aligned}
$$ \& $$
\stackrel{9}{\text { VIIIB }}
$$ \& $$
\begin{aligned}
& 10 \\
& \text { VIIIIB }
\end{aligned}
$$ \& $$
\begin{aligned}
& 11 \\
& 1 B \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& 12 \\
& \mathrm{IIB}
\end{aligned}
$$ \& $$
\begin{gathered}
13 \\
111 \mathrm{~A} \\
\hline
\end{gathered}
$$ \& $$
\begin{aligned}
& 14 \\
& 1 \text { VA }
\end{aligned}
$$ \& $$
\begin{aligned}
& 15 \\
& \text { VA }
\end{aligned}
$$ \& $$
\begin{aligned}
& 16 \\
& \text { VIA }
\end{aligned}
$$ \& $$
\begin{aligned}
& 17 \\
& \text { VIIA }
\end{aligned}
$$ \& $$
\begin{array}{|l|}
\hline 18 \\
\text { VIIIA } \\
\hline
\end{array}
$$

\hline \multirow[t]{7}{*}{} \& $$
\begin{aligned}
& \hline 1 \\
& \mathrm{H} \\
& 1.008
\end{aligned}
$$ \& $$
\begin{array}{|l|}
\hline \text { Alkaline } \\
\text { Earth } \downarrow \\
\text { Metals } \\
\hline
\end{array}
$$ \& \multicolumn{10}{|l|}{\multirow[t]{3}{*}{PERIODIC TABLE OF THE ELEMENTS

Transition Metals}} \& \multicolumn{5}{|l|}{Halogens

4.003} \& $$
\begin{aligned}
& \hline 2 \\
& \mathrm{He}
\end{aligned}
$$

\hline \& $$
\begin{aligned}
& 3 \\
& \mathrm{Li} \\
& 6.941
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 4 \\
& \mathrm{Be} \\
& 9.012
\end{aligned}
$$

\] \& \& \& \& \& \& \& \& \& \& \& \[

$$
\begin{array}{|l}
5 \\
\mathrm{~B} \\
10.81
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 6 \\
& \mathrm{C} \\
& 12.01
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 7 \\
& \mathrm{~N} \\
& 14.01
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8 \\
& 0 \\
& 16.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 9 \\
& \mathrm{~F} \\
& 19.00
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 10 \\
\mathrm{Ne} \\
20.18
\end{array}
$$
\]

\hline \& $$
\begin{aligned}
& 11 \\
& \mathrm{Na} \\
& 22.99
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 12 \\
& \mathrm{Mg} \\
& 24.31
\end{aligned}
$$

\] \& \& \& \& \& \& \& \& \& \& \& \[

$$
\begin{aligned}
& \hline 13 \\
& \text { Al } \\
& 26.98
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 14 \\
& \mathrm{Si} \\
& 28.09
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15 \\
& \mathrm{P} \\
& 30.97
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 16 \\
& \mathrm{~S} \\
& 32.07
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 17 \\
& \mathrm{Cl} \\
& 35.45
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 18 \\
\mathrm{Ar} \\
39.95
\end{array}
$$
\]

\hline \& $$
\begin{aligned}
& \hline 19 \\
& k \\
& k 9.10
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 20 \\
& \mathrm{Ca} \\
& 40.08
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 21 \\
\mathrm{Sc} \\
44.96
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \hline 22 \\
& T_{1} \\
& 47.88
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 23 \\
& \mathrm{~V} \\
& 50.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 24 \\
& \mathrm{Cr} \\
& 52.00
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 25 \\
& \mathrm{Mn} \\
& 54.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 26 \\
& \mathrm{Fe} \\
& 55.85
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 27 \\
& \mathrm{Co} \\
& 58.93
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 28 \\
& \mathrm{Ni} \\
& 58.69
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 29 \\
& \mathrm{Cu} \\
& 63.55
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 30 \\
& \mathrm{Zn} \\
& 65.38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 31 \\
& \mathrm{Ga} \\
& 69.72
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 32 \\
& \mathrm{Ge} \\
& 72.59
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 33 \\
& \text { As } \\
& 74.92
\end{aligned}
$$

\] \& | 34 |
| :--- |
| Se 78.96 | \& \[

$$
\begin{aligned}
& 35 \\
& \mathrm{Br} \\
& 79.90
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 36 \\
\mathrm{Kr} \\
83.80
\end{array}
$$
\]

\hline \& | 37 |
| :--- |
| Rb |
| 85.47 | \& \[

$$
\begin{aligned}
& \hline 38 \\
& \mathrm{Sr} \\
& 87.62
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 39 \\
y \\
88.91
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 40 \\
& \mathrm{Zr} \\
& 91.22
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 41 \\
\mathrm{Nb} \\
92.91
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \hline 42 \\
& \mathrm{Mo} \\
& 95.94
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 43 \\
& \mathrm{Tc} \\
& (98)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 44 \\
& \text { Ru } \\
& 101.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 45 \\
& \text { Rh } \\
& 102.9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 46 \\
& \mathrm{Pd} \\
& 106.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 47 \\
& \mathrm{Ag} \\
& 107.9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 48 \\
& \mathrm{Cd} \\
& 112.4
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 49 \\
\text { In } \\
114.8
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 50 \\
& \mathrm{Sn} \\
& 118.7
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 51 \\
& \mathrm{Sb} \\
& 121.8
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 52 \\
& \mathrm{Te} \\
& 127.6 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 53 \\
& 1 \\
& 126.9
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 54 \\
\mathrm{Xe} \\
131.3
\end{array}
$$
\]

\hline \& $$
\begin{aligned}
& 55 \\
& \mathrm{Cs} \\
& 132.9
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 56 \\
& \text { Ba } \\
& 137.3
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|l}
\hline 57 \\
\mathrm{La}^{*} \\
138.9
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 72 \\
& \mathrm{Hf} \\
& 178.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 73 \\
& \mathrm{Ta} \\
& 180.9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 74 \\
& w \\
& w \\
& 183.9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 75 \\
& R e \\
& 186.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 76 \\
& \text { Os } \\
& 190.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 77 \\
& \mathrm{ir} \\
& 192.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 78 \\
& \text { Pt } \\
& 195.1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 79 \\
& \mathrm{Au} \\
& 197.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 80 \\
& \mathrm{Hg}^{200} \\
& 200.6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 81 \\
& \mathrm{Ti}_{1} \\
& 204.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 82 \\
& \mathrm{~Pb} \\
& 207.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 83 \\
& \mathrm{Bi} \\
& 209.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 84 \\
& \text { Po } \\
& \text { (209) }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 85 \\
& \text { At } \\
& \text { (210) }
\end{aligned}
$$

\] \& | 86 |
| :--- |
| Rn |
| (222) |

\hline \& $$
\begin{aligned}
& \hline 87 \\
& \mathrm{Fr} \\
& \text { (223) }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 88 \\
& \text { Ra } \\
& 226
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|l}
\hline 89 \\
\mathrm{Ac}^{\prime \prime} \\
(227) \\
\hline
\end{array}
$$
\] \& 104

Unq \& $$
\begin{aligned}
& 105 \\
& \text { Unp }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 106 \\
& \text { Unh }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 107 \\
& \text { Uns }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 108 \\
& \text { Uno }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 109 \\
& \text { Une }
\end{aligned}
$$
\] \& \& \& \& \& \& \& als \& non \& netals

\hline \& \& \& \& hanides \& $$
\begin{array}{|l|}
\hline 58 \\
C e \\
140.1
\end{array}
$$ \& \[

$$
\begin{aligned}
& \hline 59 \\
& \mathrm{Pr} \\
& 140.9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 60 \\
& \mathrm{Na} \\
& 144.2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 61 \\
& { }_{(14}{ }_{(145)}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 62 \\
& \text { Sm } \\
& 150.4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 63 \\
& \mathrm{Eu} \\
& 152.0 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 64 \\
& \text { Gd } \\
& 157.3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 65 \\
& \text { Tb } \\
& 158.9
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline 66 \\
\text { Dy } \\
162.5
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 67 \\
& \mathrm{Ho} \\
& 164.9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 68 \\
& \mathrm{Er} \\
& 167.3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 69 \\
& \mathrm{Tm}_{1 m} \\
& 168.9
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 70 \\
& \mathrm{Yb} \\
& 173.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 71 \\
& \text { Lu } \\
& 1755.0
\end{aligned}
$$
\]

\hline \& \& \& \& Actinides \& $$
\begin{aligned}
& 90 \\
& \text { Th } \\
& 232.0
\end{aligned}
$$ \& 91 Pa (231) \& \[

$$
\begin{aligned}
& 92 \\
& U \\
& 238.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 93 \\
& p_{2} \\
& (237)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 94 \\
& \mathrm{Pu} \\
& (244) \\
& \hline
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 96 \\
& C_{m} \\
& (247)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 97 \\
& \mathrm{BK} \\
& (247) \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 98 \\
& \mathrm{Cf}
\end{aligned}
$$
\]

(251) \& $$
\begin{aligned}
& 99 \\
& \text { Es } \\
& (252)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 100 \\
& \text { Fm } \\
& (257)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 101 \\
& \text { Md } \\
& (258)
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 102 \\
& \text { No } \\
& \text { (259) }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l}
\hline 103 \\
\text { Lr } \\
(260)
\end{array}
$$
\]

\hline
\end{tabular}

MONATOMIC

Ag^{+}	silver ion
Al^{3+}	aluminum ion
Au^{+}and Au^{2+}	gold ion
Be^{2+}	beryllium ion
Ca^{2+}	calcium ion
Co^{2+} and Co^{3+}	cobalt ion
Cr^{2+} and Cr^{3+}	chromium ion
Cu^{+}and Cu^{2+}	copper ion
Fe^{2+} and Fe^{3+}	iron ion
K^{+}	potassium ion
Li^{+}	lithium ion
Mg^{2+}	magnesium ion
Na^{+}	sodium ion
Zn^{2+}	zinc ion

POLYATOMIC

$\mathrm{BO}_{3}{ }^{3-}$	borate ion
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	acetate ion
ClO^{-}	hypochlorite ion
$\mathrm{ClO}_{2}{ }^{-}$	chlorite ion
$\mathrm{ClO}_{3}{ }^{-}$	chlorate ion
$\mathrm{ClO}_{4}{ }^{-}$	perchlorate ion
CN^{-}	cyanide ion
$\mathrm{CO}_{3}{ }^{2-}$	carbonate ion
$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	oxalate ion
$\mathrm{CrO}_{4}{ }^{2-}$	chromate ion
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	dichromate ion
$\mathrm{HCO}_{3}{ }^{-}$	hydrogen carbonate or bicarbonate ion
$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium ion
$\mathrm{HPO}_{4}{ }^{2-}$	hydrogen phosphate ion
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	dihydrogen phosphate ion
$\mathrm{HSO}_{3}{ }^{-}$	hydrogen sulphite or bisulphite ion
$\mathrm{HSO}_{4}{ }^{-}$	hydrogen sulphate or bisulphate ion
$\mathrm{MnO}_{4}{ }^{-}$	permanganate ion
$\mathrm{N}_{3}{ }^{-}$	azide ion
NH_{4}^{+}	ammonium ion
$\mathrm{NO}_{2}{ }^{-}$	nitrite ion
$\mathrm{NO}_{3}{ }^{-}$	nitrate ion
$\mathrm{O}_{2}{ }^{2-}$	peroxide ion
OCN^{-}	cyanate ion
OH^{-}	hydroxide ion
$\mathrm{PO}_{3}{ }^{3-}$	phosphite ion
$\mathrm{PO}_{4}{ }^{3-}$	phosphate ion
SCN^{-}	thiocyanate ion
$\mathrm{SO}_{3}{ }^{2-}$	sulphite ion
$\mathrm{SO}_{4}{ }^{2-}$	sulphate ion
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	thiosulphate ion

EnOTE.UEEBIY.COM

This material is owned by Power Engineering Training Systems and may not be modified from its original form.
Duplication of this material for student use in-class or for examination purposes is permitted without written approval.

Address all inquiries to:
Power Engineering Training Systems
1301 - 16 Ave. NW, Calgary, AB Canada T2M OL4
1-866-256-8193

[^0]: $\mathrm{R}=$ Gas content, $\mathrm{kJ} / \mathrm{kgK}$
 $\mathrm{R}=$ Gas content, $\mathrm{kJ} / \mathrm{kgK}$
 $\mathrm{S}=$ Entropy, kJ / K
 $\mathrm{T}=$ Absolute temperature, $\mathrm{K}=273+{ }^{\circ} \mathrm{C}$
 $\mathrm{U}=$ Internal energy, kJ
 $V=$ Volume, m
 $\mathrm{m}=$ Mass of gas, kg
 $*$ Can be used for reversible adiabatic processes
 $c_{v}=$ Specific heat at constant volume, $\mathrm{kJ} / \mathrm{kgK}$
 $\mathrm{c}_{\mathrm{p}}=$ Specific heat at constant pressure, $\mathrm{kJ} / \mathrm{kgK}$
 $\mathrm{c}_{\mathrm{n}}=$ Specific heat for a polytropic process $=\mathrm{c}_{v}\left(\frac{\gamma-\mathrm{n}}{1-\mathrm{n}}\right) \mathrm{kJ} / \mathrm{kgK}$
 $\mathrm{H}=$ Enthalpy, kJ
 $\gamma=$ Isentropic exponent, $\mathrm{c}_{\mathrm{p}} / \mathrm{c}_{v}$
 $\mathrm{n}=$ Polytropic exponent
 $\mathrm{P}=$ Pressure, kPa

