

Let Us C
Fifth Edition

Yashavant P. Kanetkar

furqan
Highlight

Dedicated to baba

Who couldn’t be here to see this day...

About the Author
Destiny drew Yashavant Kanetkar towards computers when the IT
industry was just making a beginning in India. Having completed
his education from VJTI Mumbai and IIT Kanpur in Mechanical
Engineering he started his training company in Nagpur.

Yashavant has a passion for writing and is an author of several
books in C, C++, VC++, C#, .NET, DirectX and COM
programming. He is a much sought after speaker on various
technology subjects and is a regular columnist for Express
Computers and Developer 2.0. His current affiliations include
being a Director of KICIT, a training company and DCube
Software Technologies, a software development company. In
recognition to his contribution Microsoft awarded him the
prestigious “Best .NET Technical Contributor” award recently.
He can be reached at kanetkar@kicit.com.

Acknowledgments
It has been a journey of almost a decade from the stage the book
idea of “Let Us C” was conceived up to the release of this Fifth
Edition. During this journey I have met so many students,
developers, professors, publishers and authors who expressed their
opinions about Let Us C. They have been the main motivators in
my effort to continuously improve this book.

In particular I am indebted to Manish Jain who had a faith in this
book idea, believed in my writing ability, whispered the words of
encouragement and made helpful suggestions from time to time.

The five editions of this book saw several changes and facelifts.
During this course people like Ajay Joshi, Amol Tambat, Ajay
Daga, Nandita Shastri, Mrunal Khandekar and Rahul Bedge
helped in writing programs, spotting bugs, drawing figures and
preparing index. I trust that with their collective acumen all the
programs would run correctly in all situations.

Anup Das, my colleague has a lot of influence on this Fifth
Edition. He helped my clarify my thoughts and pointing me in the
direction of Windows and Linux. He sincerely wanted this edition
to offer “C, in today’s perspective”. I am hopeful that his dream
has been realized.

I thank Seema, my wife, for her friendship and for her
contributions in everything that I do in IT in ways more than she
could ever guess. Though she is a Gynecologist by profession she
has the uncanny ability to come up with suggestions that make me
feel “Oh, why didn’t it occur to me”.

And finally my heartfelt gratitude to the countless students who
made me look into every nook and cranny of C. I would forever
remain indebted to them..

v

Preface to the Fifth Edition
It is mid 2004. World has left behind the DOTCOM bust, 9/11
tragedy, the economic downturn, etc. and moved on. Countless
Indians have relentlessly worked for close to two decades to
successfully establish “India” as a software brand. At times I take
secret pleasure in seeing that a book that I have been part of, has
contributed in its own little way in shaping so many budding
careers that have made the “India” brand acceptable.

Computing and the way people use C for doing it keeps changing
as years go by. So overwhelming has been the response to all the
previous editions of “Let Us C” that I have now decided that each
year I would come up with a new edition of it so that I can keep
the readers abreast with the way C is being used at that point in
time.

There are two phases in every C programmer’s life. In the first
phase he is a learner trying to understand the language elements
and their nuances. At this stage he wants a simple learning
environment that helps him to master the language. In my opinion,
even today there isn’t any learning environment that can beat
Turbo C/C++ for simplicity. Hence the first fifteen chapters are
written keeping this environment in mind, though a majority of
these programs in these chapters would work with any C compiler.

Armed with the knowledge of language elements the C
programmer enters the second phase. Here he wishes to use all that
he has learnt to create programs that match the ability of programs
that he see in today’s world. I am pointing towards programs in
Windows and Linux world. Chapters 16 to 21 are devoted to this. I
would like to your attention the fact that if you want to program
Windows or Linux you need to have a very good grasp over the
programming model used by each of these OS. Windows
messaging architecture and Linux signaling mechanism are the
cases in point. Once you understand these thoroughly rest is just a

vi

matter of time. Chapters 16 to 21 have been written with this
motive.

In Linux programming the basic hurdle is in choosing the Linux
distribution, compiler, editor, shell, libraries, etc. To get a head-
start you can follow the choices that I found most reasonable and
simple. They have been mentioned in Chapter 20 and Appendix H.
Once you are comfortable you can explore other choices.

In fourth edition of Let Us C there were chapters on ‘Disk Basics’,
‘VDU Basics’, ‘Graphics’, ‘Mouse Programming’, ‘C and
Assembly’. Though I used to like these chapters a lot I had to take
a decision to drop them since most of them were DOS-centric and
would not be so useful in modern-day programming. Modern
counterparts of all of these have been covered in Chapters 16 to
21. However, if you still need the chapters from previous edition
they are available at www.kicit.com/books/letusc/fourthedition.

Also, all the programs present in the book are available in source
code form at www.kicit.com/books/letusc/sourcecode. You are
free to download them, improve them, change them, do whatever
with them. If you wish to get solutions for the Exercises in the
book they are available in another book titled ‘Let Us C
Solutions’.

‘Let Us C’ is as much your book as it is mine. So if you feel that I
could have done certain job better than what I have, or you have
any suggestions about what you would like to see in the next
edition, please drop a line to letuscsuggestions@kicit.com.

All the best and happy programming!

vii

Contents
1.

2.

Getting Started 1

What is C 2
Getting Started with C 4

The C Character Set 5
Constants, Variables and Keywords 6
Types of C Constants 7
Rules for Constructing Integer Constants 8
Rules for Constructing Real Constants 9
Rules for Constructing Character Constants 10
Types of C Variables 11
Rules for Constructing Variable Names 11
C Keywords 12

The First C Program 13
Compilation and Execution 19
Receiving Input 21
C Instructions 23

Type Declaration Instruction 24
Arithmetic Instruction 25
Integer and Float Conversions 29
Type Conversion in Assignments 29
Hierarchy of Operations 31
Associativity of Operators 34

Control Instructions in C 37
Summary 37
Exercise 38

The Decision Control Structure 49

Decisions! Decisions! 50
The if Statement 51

The Real Thing 55
Multiple Statements within if 56

The if-else Statement 58

viii

Nested if-elses 61
Forms of if 62

Use of Logical Operators 64
The else if Clause 66
The ! Operator 72
Hierarchy of Operators Revisited 73

A Word of Caution 73
The Conditional Operators 76
Summary 77
Exercise 78

3.

4.

The Loop Control Structure 97

Loops 98
The while Loop 99

Tips and Traps 101
More Operators 105

The for Loop 107
Nesting of Loops 114
Multiple Initialisations in the for Loop 115

The Odd Loop 116
The break Statement 118
The continue Statement 120
The do-while Loop 121
Summary 124
Exercise 124

The Case Control Structure 135

Decisions Using switch 136

The Tips and Traps 140
switch Versus if-else Ladder 144
The goto Keyword 145
Summary 148
Exercise 149

ix

5.

6.

Functions & Pointers 157

What is a Function 158
Why Use Functions 165

Passing Values between Functions 166
Scope Rule of Functions 171
Calling Convention 172
One Dicey Issue 173
Advanced Features of Functions 174

Function Declaration and Prototypes 175
Call by Value and Call by Reference 178
An Introduction to Pointers 178
Pointer Notation 179
Back to Function Calls 186
Conclusions 189
Recursion 189

 Recursion and Stack 194
Adding Functions to the Library 197
Summary 201
Exercise 201

Data Types Revisited 213

Integers, long and short 214
Integers, signed and unsigned 216
Chars, signed and unsigned 217
Floats and Doubles 219
A Few More Issues… 221
Storage Classes in C 223

Automatic Storage Class 224
Register Storage Class 226
Static Storage Class 227
External Storage Class 230
Which to Use When 233

Summary 234
Exercise 235

x

The C Preprocessor 241

Features of C Preprocessor 242
Macro Expansion 244

Macros with Arguments 248
Macros versus Functions 252

File Inclusion 253
Conditional Compilation 255
#if and #elif Directives 258
Miscellaneous Directives 260

#undef Directive 260
#pragma Directive 261

Summary 263
Exercise 264

7.

8. Arrays 269

What are Arrays 270
A Simple Program Using Array 272

More on Arrays 275
Array Initialization 275
Bounds Checking 276
Passing Array Elements to a Function 277

Pointers and Arrays 279
Passing an Entire Array to a Function 286
The Real Thing 287

Two Dimensional Arrays 289
Initializing a 2-Dimensional Array 290
Memory Map of a 2-Dimensional Array 291
Pointers and 2-Dimensional Arrays 292
Pointer to an Array 295
Passing 2-D array to a Function 297

Array of Pointers 300
Three Dimensional Array 302
Summary 304

xi

Exercise 304

Puppetting On Strings 327

What are Strings 328
More about Strings 329
Pointers and Strings 334
Standard Library String Functions 335

strlen() 337
strcpy() 339
strcat() 342
strcmp() 343

Two-Dimensional Array of Characters 344
Array of Pointers to Strings 347
Limitation of Array of Pointers to Strings 351

Solution 352
Summary 353
Exercise 354

9.

10.

11.

 Structures 363

Why Use Structures 364
Declaring a Structure 367
Accessing Structure Elements 370
How Structure Elements are Stored 370

Array of Structures 371
Additional Features of Structures 374
Uses of Structures 383
Summary 384
Exercise 384

 Console Input/Output 393

Types of I/O 394
Console I/O Functions 395

Formatted Console I/O Functions 396

xii

sprintf() and sscanf() Functions 404
Unformatted Console I/O Functions 405

Summary 409
Exercise 409

File Input/Output 415

Data Organization 416
File Operations 417

Opening a File 418
Reading from a File 420
Trouble in Opening a File 421

 Closing the File 422
Counting Characters, Tabs, Spaces, … 422
A File-copy Program 424

Writing to a File 425
File Opening Modes 426
String (line) I/O in Files 427

The Awkward Newline 430
Record I/O in Files 430
Text Files and Binary Files 434
Record I/O Revisited 437
Database Management 441
Low Level Disk I/O 447

A Low Level File-copy Program 448
I/O Under Windows 453
Summary 453
Exercise 454

12.

13. More Issues In Input/Output 465

Using argc and argv 466
Detecting Errors in Reading/Writing 470
Standard I/O Devices 472
I/O Redirection 473

Redirecting the Output 474

xiii

Redirecting the Input 476
Both Ways at Once 477

Summary 478
Exercise 478

14.

15.

 Operations On Bits 481

Bitwise Operators 482

One’s Complement Operator 484
Right Shift Operator 486
Left Shift Operator 488
Bitwise AND Operator 493
Bitwise OR Operator 498
Bitwise XOR Operator 499

The showbits() Function 500
Summary 501
Exercise 501

 Miscellaneous Features 505

Enumerated Data Type 506
Uses of Enumerated Data Type 507

Renaming Data Types with typedef 510
Typecasting 511
Bit Fields 513
Pointers to Functions 515
Functions Returning Pointers 518
Functions with Variable Number of Arguments 520
Unions 524

Union of Structures 530
Summary 531
Exercise 531

xiv

C Under Windows 535

Which Windows… 536
Integers 537
The Use of typedef 537
Pointers in the 32-bit World 539

Memory Management 540
Device Access 543

DOS Programming Model 543
Windows Programming Model 547

Event Driven Model 551
Windows Programming, a Closer Look 552
The First Windows Program 554
Hungarian Notation 558
Summary 558
Exercise 559

16.

17.

18.

Windows Programming 561

The Role of a Message Box 562
Here Comes the window… 563
More Windows 566
A Real-World Window 567

Creation and Displaying of Window 569
Interaction with Window 570
Reacting to Messages 572

Program Instances 575
Summary 575
Exercise 576

Graphics Under Windows 579

Graphics as of Now 580
Device Independent Drawing 580

xv

Hello Windows 582
Drawing Shapes 586
Types of Pens 590
Types of Brushes 592

Code and Resources 596
Freehand Drawing, the Paintbrush Style 596

Capturing the Mouse 600
Device Context, a Closer Look 601
Displaying a Bitmap 603
Animation at Work 607

WM_CREATE and OnCreate() 611
WM_TIMER and OnTimer() 611
A Few More Points… 612

Windows, the Endless World… 613
Summary 614
Exercise 615

19. Interaction With Hardware 617

Hardware Interaction 618
Hardware Interaction, DOS Perspective 619
Hardware Interaction, Windows Perspective 623
Communication with Storage Devices 626

The ReadSector() Function 631
Accessing Other Storage Devices 633
Communication with Keyboard 634

Dynamic Linking 635
Windows Hooks 635

Caps Locked, Permanently 637
Did You Press It TTwwiiccee…… 643
Mangling Keys 644
KeyLogger 645
Where is This Leading 646
Summary 647
Exercise 647

xvi

C Under Linux 649

What is Linux 650
C Programming Under Linux 651
The ‘Hello Linux’ Program 652
Processes 653
Parent and Child Processes 655
More Processes 659
Zombies and Orphans 660
One Interesting Fact 663
Summary 664
Exercise 664

20.

21. More Linux Programming 667

Communication using Signals 668
Handling Multiple Signals 671
Registering a Common Handler 673
Blocking Signals 675
Event Driven Programming 678
Where Do You Go From Here 684
Summary 684
Exercise 685

Appendix A – Precedence Table 687
Appendix B – Standard Library Functions 691
Appendix C – Chasing the Bugs 701
Appendix D – Hexadecimal Numbering 713
Appendix E – ASCII Chart 719
Appendix F – Helper.h File 725
Appendix G – Boot Parameters 729
Appendix H – Linux Installation 735
Index 739

xvii

1 Getting Started

• What is C
• Getting Started with C

The C Character Set
Constants, Variables and Keywords
Types of C Constants
Rules for Constructing Integer Constants
Rules for Constructing Real Constants
Rules for Constructing Character Constants
Types of C Variables
Rules for Constructing Variable Names
C Keywords

• The First C Program
• Compilation and Execution
• Receiving Input
• C Instructions

Type Declaration Instruction
Arithmetic Instruction
Integer and Float Conversions
Hierarchy of Operations
Associativity Of Operators

• Control Instruction in C
• Summary
• Exercise

1

2 Let Us C

efore we can begin to write serious programs in C, it would
be interesting to find out what really is C, how it came into
existence and how does it compare with other computer

languages. In this chapter we would briefly outline these issues.

B
Four important aspects of any language are the way it stores data,
the way it operates upon this data, how it accomplishes input and
output and how it lets you control the sequence of execution of
instructions in a program. We would discuss the first three of these
building blocks in this chapter.

What is C
C is a programming language developed at AT & T’s Bell
Laboratories of USA in 1972. It was designed and written by a
man named Dennis Ritchie. In the late seventies C began to
replace the more familiar languages of that time like PL/I,
ALGOL, etc. No one pushed C. It wasn’t made the ‘official’ Bell
Labs language. Thus, without any advertisement C’s reputation
spread and its pool of users grew. Ritchie seems to have been
rather surprised that so many programmers preferred C to older
languages like FORTRAN or PL/I, or the newer ones like Pascal
and APL. But, that's what happened.

Possibly why C seems so popular is because it is reliable, simple
and easy to use. Moreover, in an industry where newer languages,
tools and technologies emerge and vanish day in and day out, a
language that has survived for more than 3 decades has to be really
good.

An opinion that is often heard today is – “C has been already
superceded by languages like C++, C# and Java, so why bother to

Chapter 1: Getting Started 3

learn C today”. I seriously beg to differ with this opinion. There
are several reasons for this:

(a)

(b)

(c)

(d)

I believe that nobody can learn C++ or Java directly. This is
because while learning these languages you have things like
classes, objects, inheritance, polymorphism, templates,
exception handling, references, etc. do deal with apart from
knowing the actual language elements. Learning these
complicated concepts when you are not even comfortable
with the basic language elements is like putting the cart before
the horse. Hence one should first learn all the language
elements very thoroughly using C language before migrating
to C++, C# or Java. Though this two step learning process
may take more time, but at the end of it you will definitely
find it worth the trouble.

C++, C# or Java make use of a principle called Object
Oriented Programming (OOP) to organize the program. This
organizing principle has lots of advantages to offer. But even
while using this organizing principle you would still need a
good hold over the language elements of C and the basic
programming skills.

Though many C++ and Java based programming tools and
frameworks have evolved over the years the importance of C
is still unchallenged because knowingly or unknowingly while
using these frameworks and tools you would be still required
to use the core C language elements—another good reason
why one should learn C before C++, C# or Java.

Major parts of popular operating systems like Windows,
UNIX, Linux is still written in C. This is because even today
when it comes to performance (speed of execution) nothing
beats C. Moreover, if one is to extend the operating system to
work with new devices one needs to write device driver
programs. These programs are exclusively written in C.

4 Let Us C

(e)

(f)

(g)

Mobile devices like cellular phones and palmtops are
becoming increasingly popular. Also, common consumer
devices like microwave oven, washing machines and digital
cameras are getting smarter by the day. This smartness comes
from a microprocessor, an operating system and a program
embedded in this devices. These programs not only have to
run fast but also have to work in limited amount of memory.
No wonder that such programs are written in C. With these
constraints on time and space, C is the language of choice
while building such operating systems and programs.

You must have seen several professional 3D computer games
where the user navigates some object, like say a spaceship and
fires bullets at the invaders. The essence of all such games is
speed. Needless to say, such games won't become popular if
they takes a long time to move the spaceship or to fire a
bullet. To match the expectations of the player the game has
to react fast to the user inputs. This is where C language
scores over other languages. Many popular gaming
frameworks have been built using C language.

At times one is required to very closely interact with the
hardware devices. Since C provides several language
elements that make this interaction feasible without
compromising the performance it is the preferred choice of
the programmer.

I hope that these are very convincing reasons why one should
adopt C as the first and the very important step in your quest for
learning programming languages.

Getting Started with C
Communicating with a computer involves speaking the language
the computer understands, which immediately rules out English as
the language of communication with computer. However, there is

Chapter 1: Getting Started 5

a close analogy between learning English language and learning C
language. The classical method of learning English is to first learn
the alphabets used in the language, then learn to combine these
alphabets to form words, which in turn are combined to form
sentences and sentences are combined to form paragraphs.
Learning C is similar and easier. Instead of straight-away learning
how to write programs, we must first know what alphabets,
numbers and special symbols are used in C, then how using them
constants, variables and keywords are constructed, and finally how
are these combined to form an instruction. A group of instructions
would be combined later on to form a program. This is illustrated
in the Figure 1.1.

 Alphabets Words Sentences Paragraphs

 Alphabets
Digits
Special sy-
mbols

 Constants
Variables
Keywords

Instructions

Program

Steps in learning English language:

Steps in learning C:

Figure 1.1

The C Character Set

A character denotes any alphabet, digit or special symbol used to
represent information. Figure 1.2 shows the valid alphabets,
numbers and special symbols allowed in C.

6 Let Us C

 Alphabets A, B, ….., Y, Z
a, b, ……, y, z

 Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

 Special symbols ~ ‘ ! @ # % ^ & * () _ - + = | \ { }

[] : ; " ' < > , . ? /

Figure 1.2

Constants, Variables and Keywords

The alphabets, numbers and special symbols when properly
combined form constants, variables and keywords. Let us see what
are ‘constants’ and ‘variables’ in C. A constant is an entity that
doesn’t change whereas a variable is an entity that may change.

In any program we typically do lots of calculations. The results of
these calculations are stored in computers memory. Like human
memory the computer memory also consists of millions of cells.
The calculated values are stored in these memory cells. To make
the retrieval and usage of these values easy these memory cells
(also called memory locations) are given names. Since the value
stored in each location may change the names given to these
locations are called variable names. Consider the following
example.

Here 3 is stored in a memory location and a name x is given to it.
Then we are assigning a new value 5 to the same memory location
x. This would overwrite the earlier value 3, since a memory
location can hold only one value at a time. This is shown in Figure
1.3.

Chapter 1: Getting Started 7

x = 3 x = 5

Figure 1.3

x 3 x 5

Since the location whose name is x can hold different values at
different times x is known as a variable. As against this, 3 or 5 do
not change, hence are known as constants.

Types of C Constants

C constants can be divided into two major categories:

(a)
(b)

Primary Constants
Secondary Constants

These constants are further categorized as shown in Figure 1.4.

8 Let Us C

Figure 1.4

C Constants

Primary Constants Secondary Constants

Integer Constant
Real Constant
Character Constant

Array
Pointer
Structure
Union
Enum, etc.

At this stage we would restrict our discussion to only Primary
Constants, namely, Integer, Real and Character constants. Let us
see the details of each of these constants. For constructing these
different types of constants certain rules have been laid down.
These rules are as under:

Rules for Constructing Integer Constants

An integer constant must have at least one digit. (a)
(b)
(c)
(d)

(e)
(f)

It must not have a decimal point.
It can be either positive or negative.
If no sign precedes an integer constant it is assumed to be
positive.
No commas or blanks are allowed within an integer constant.
The allowable range for integer constants is -32768 to 32767.

Truly speaking the range of an Integer constant depends upon the
compiler. For a 16-bit compiler like Turbo C or Turbo C++ the

Chapter 1: Getting Started 9

range is –32768 to 32767. For a 32-bit compiler the range would
be even greater. Question like what exactly do you mean by a 16-
bit or a 32-bit compiler, what range of an Integer constant has to
do with the type of compiler and such questions are discussed in
detail in Chapter 16. Till that time it would be assumed that we are
working with a 16-bit compiler.

Ex.: 426
 +782
 -8000
 -7605

Rules for Constructing Real Constants

Real constants are often called Floating Point constants. The real
constants could be written in two forms—Fractional form and
Exponential form.

Following rules must be observed while constructing real
constants expressed in fractional form:

(a)
(b)
(c)
(d)
(e)

A real constant must have at least one digit.
It must have a decimal point.
It could be either positive or negative.
Default sign is positive.
No commas or blanks are allowed within a real constant.

Ex.: +325.34
 426.0
 -32.76
 -48.5792

The exponential form of representation of real constants is usually
used if the value of the constant is either too small or too large. It
however doesn’t restrict us in any way from using exponential
form of representation for other real constants.

10 Let Us C

In exponential form of representation, the real constant is
represented in two parts. The part appearing before ‘e’ is called
mantissa, whereas the part following ‘e’ is called exponent.

Following rules must be observed while constructing real
constants expressed in exponential form:

(a)

(b)
(c)
(d)

(e)

(a)

(b)

The mantissa part and the exponential part should be
separated by a letter e.
The mantissa part may have a positive or negative sign.
Default sign of mantissa part is positive.
The exponent must have at least one digit, which must be a
positive or negative integer. Default sign is positive.
Range of real constants expressed in exponential form is
-3.4e38 to 3.4e38.

Ex.: +3.2e-5
 4.1e8
 -0.2e+3
 -3.2e-5

Rules for Constructing Character Constants
A character constant is a single alphabet, a single digit or a
single special symbol enclosed within single inverted
commas. Both the inverted commas should point to the left.
For example, ’A’ is a valid character constant whereas ‘A’ is
not.
The maximum length of a character constant can be 1
character.

Ex.: 'A'
 'I'
 '5'
 '='

Chapter 1: Getting Started 11

Types of C Variables

As we saw earlier, an entity that may vary during program
execution is called a variable. Variable names are names given to
locations in memory. These locations can contain integer, real or
character constants. In any language, the types of variables that it
can support depend on the types of constants that it can handle.
This is because a particular type of variable can hold only the same
type of constant. For example, an integer variable can hold only an
integer constant, a real variable can hold only a real constant and a
character variable can hold only a character constant.

The rules for constructing different types of constants are different.
However, for constructing variable names of all types the same set
of rules apply. These rules are given below.

Rules for Constructing Variable Names
(a)

(b)

(c)
(d)

A variable name is any combination of 1 to 31 alphabets,
digits or underscores. Some compilers allow variable names
whose length could be up to 247 characters. Still, it would be
safer to stick to the rule of 31 characters. Do not create
unnecessarily long variable names as it adds to your typing
effort.
The first character in the variable name must be an alphabet or
underscore.
No commas or blanks are allowed within a variable name.
No special symbol other than an underscore (as in gross_sal)
can be used in a variable name.

Ex.: si_int
 m_hra
 pop_e_89

These rules remain same for all the types of primary and secondary
variables. Naturally, the question follows... how is C able to
differentiate between these variables? This is a rather simple

12 Let Us C

matter. C compiler is able to distinguish between the variable
names by making it compulsory for you to declare the type of any
variable name that you wish to use in a program. This type
declaration is done at the beginning of the program. Following are
the examples of type declaration statements:

Ex.: int si, m_hra ;
 float bassal ;
 char code ;

Since, the maximum allowable length of a variable name is 31
characters, an enormous number of variable names can be
constructed using the above-mentioned rules. It is a good practice
to exploit this enormous choice in naming variables by using
meaningful variable names.

Thus, if we want to calculate simple interest, it is always advisable
to construct meaningful variable names like prin, roi, noy to
represent Principle, Rate of interest and Number of years rather
than using the variables a, b, c.

C Keywords

Keywords are the words whose meaning has already been
explained to the C compiler (or in a broad sense to the computer).
The keywords cannot be used as variable names because if we do
so we are trying to assign a new meaning to the keyword, which is
not allowed by the computer. Some C compilers allow you to
construct variable names that exactly resemble the keywords.
However, it would be safer not to mix up the variable names and
the keywords. The keywords are also called ‘Reserved words’.

There are only 32 keywords available in C. Figure 1.5 gives a list
of these keywords for your ready reference. A detailed discussion
of each of these keywords would be taken up in later chapters
wherever their use is relevant.

Chapter 1: Getting Started 13

 auto double int struct

 break else long switch
 case enum register typedef
 char extern return union
 const float short unsigned
 continue for signed void
 default goto sizeof volatile
 do if static while

Figure 1.5

Note that compiler vendors (like Microsoft, Borland, etc.) provide
their own keywords apart from the ones mentioned above. These
include extended keywords like near, far, asm, etc. Though it has
been suggested by the ANSI committee that every such compiler
specific keyword should be preceded by two underscores (as in
__asm), not every vendor follows this rule.

The First C Program
Armed with the knowledge about the types of variables, constants
& keywords the next logical step is to combine them to form
instructions. However, instead of this, we would write our first C
program now. Once we have done that we would see in detail the
instructions that it made use of.

Before we begin with our first C program do remember the
following rules that are applicable to all C programs:

(a) Each instruction in a C program is written as a separate
statement. Therefore a complete C program would comprise
of a series of statements.

14 Let Us C

(b)

(c)

(d)

(e)

(f)

The statements in a program must appear in the same order in
which we wish them to be executed; unless of course the logic
of the problem demands a deliberate ‘jump’ or transfer of
control to a statement, which is out of sequence.

Blank spaces may be inserted between two words to improve
the readability of the statement. However, no blank spaces are
allowed within a variable, constant or keyword.

All statements are entered in small case letters.

C has no specific rules for the position at which a statement is
to be written. That’s why it is often called a free-form
language.

Every C statement must end with a ;. Thus ; acts as a
statement terminator.

Let us now write down our first C program. It would simply
calculate simple interest for a set of values representing principle,
number of years and rate of interest.

/* Calculation of simple interest */
/* Author gekay Date: 25/05/2004 */
main()
{
 int p, n ;
 float r, si ;

 p = 1000 ;
 n = 3 ;
 r = 8.5 ;

 /* formula for simple interest */
 si = p * n * r / 100 ;

 printf ("%f" , si) ;

Chapter 1: Getting Started 15

}

Now a few useful tips about the program...

− Comment about the program should be enclosed within /* */.
For example, the first two statements in our program are
comments.

− Though comments are not necessary, it is a good practice to

begin a program with a comment indicating the purpose of the
program, its author and the date on which the program was
written.

− Any number of comments can be written at any place in the

program. For example, a comment can be written before the
statement, after the statement or within the statement as shown
below:

 /* formula */ si = p * n * r / 100 ;
 si = p * n * r / 100 ; /* formula */
 si = p * n * r / /* formula */ 100 ;

− Sometimes it is not so obvious as to what a particular

statement in a program accomplishes. At such times it is
worthwhile mentioning the purpose of the statement (or a set
of statements) using a comment. For example:

 /* formula for simple interest */
 si = p * n * r / 100 ;

− Often programmers seem to ignore writing of comments. But
when a team is building big software well commented code is
almost essential for other team members to understand it.

16 Let Us C

− Although a lot of comments are probably not necessary in this
program, it is usually the case that programmers tend to use
too few comments rather than too many. An adequate number
of comments can save hours of misery and suffering when you
later try to figure out what the program does.

− The normal language rules do not apply to text written within

/* .. */. Thus we can type this text in small case, capital or a
combination. This is because the comments are solely given
for the understanding of the programmer or the fellow
programmers and are completely ignored by the compiler.

− Comments cannot be nested. For example,

/* Cal of SI /* Author sam date 01/01/2002 */ */

is invalid.

− A comment can be split over more than one line, as in,

/* This is
 a jazzy
 comment */

Such a comment is often called a multi-line comment.

− main() is a collective name given to a set of statements. This
name has to be main(), it cannot be anything else. All
statements that belong to main() are enclosed within a pair of
braces { } as shown below.

main()
{
 statement 1 ;
 statement 2 ;

Chapter 1: Getting Started 17

 statement 3 ;
}

− Technically speaking main() is a function. Every function has

a pair of parentheses () associated with it. We would discuss
functions and their working in great detail in Chapter 5.

− Any variable used in the program must be declared before

using it. For example,

int p, n ;
float r, si ;

− Any C statement always ends with a ;

For example,

float r, si ;
r = 8.5 ;

− In the statement,

si = p * n * r / 100 ;

* and / are the arithmetic operators. The arithmetic operators
available in C are +, -, * and /. C is very rich in operators.
There are about 45 operators available in C. Surprisingly there
is no operator for exponentiation... a slip, which can be
forgiven considering the fact that C has been developed by an
individual, not by a committee.

− Once the value of si is calculated it needs to be displayed on
the screen. Unlike other languages, C does not contain any
instruction to display output on the screen. All output to screen
is achieved using readymade library functions. One such

18 Let Us C

function is printf(). We have used it display on the screen the
value contained in si.

The general form of printf() function is,

printf ("<format string>", <list of variables>) ;

<format string> can contain,

%f for printing real values
%d for printing integer values
%c for printing character values

In addition to format specifiers like %f, %d and %c the
format string may also contain any other characters. These
characters are printed as they are when the printf() is
executed.

Following are some examples of usage of printf() function:

printf ("%f", si) ;
printf ("%d %d %f %f", p, n, r, si) ;
printf ("Simple interest = Rs. %f", si) ;
printf ("Prin = %d \nRate = %f", p, r) ;

The output of the last statement would look like this...

Prin = 1000
Rate = 8.5

What is ‘\n’ doing in this statement? It is called newline and it
takes the cursor to the next line. Therefore, you get the output
split over two lines. ‘\n’ is one of the several Escape
Sequences available in C. These are discussed in detail in
Chapter 11. Right now, all that we can say is ‘\n’ comes in

Chapter 1: Getting Started 19

handy when we want to format the output properly on
separate lines.

printf() can not only print values of variables, it can also
print the result of an expression. An expression is nothing but
a valid combination of constants, variables and operators.
Thus, 3, 3 + 2, c and a + b * c – d all are valid expressions.
The results of these expressions can be printed as shown
below:

printf ("%d %d %d %d", 3, 3 + 2, c, a + b * c – d) ;

Note that 3 and c also represent valid expressions.

Compilation and Execution
Once you have written the program you need to type it and instruct
the machine to execute it. To type your C program you need
another program called Editor. Once the program has been typed it
needs to be converted to machine language (0s and 1s) before the
machine can execute it. To carry out this conversion we need
another program called Compiler. Compiler vendors provide an
Integrated Development Environment (IDE) which consists of an
Editor as well as the Compiler.

There are several such IDEs available in the market targeted
towards different operating systems. For example, Turbo C, Turbo
C++ and Microsoft C are some of the popular compilers that work
under MS-DOS; Visual C++ and Borland C++ are the compilers
that work under Windows, whereas gcc compiler works under
Linux. Note that Turbo C++, Microsoft C++ and Borland C++
software also contain a C compiler bundled with them. If you are a
beginner you would be better off using a simple compiler like
Turbo C or Turbo C++. Once you have mastered the language
elements you can then switch over to more sophisticated compilers
like Visual C++ under Windows or gcc under Linux. Most of the

20 Let Us C

programs in this book would work with all the compilers.
Wherever there is a deviation I would point it out that time.

Assuming that you are using a Turbo C or Turbo C++ compiler
here are the steps that you need to follow to compile and execute
your first C program…

(a)

(b)
(c)
(d)

(e)
(f)

(a)

(b)

Start the compiler at C> prompt. The compiler (TC.EXE is
usually present in C:\TC\BIN directory).
Select New from the File menu.
Type the program.
Save the program using F2 under a proper name (say
Program1.c).
Use Ctrl + F9 to compile and execute the program.
Use Alt + F5 to view the output.

Note that on compiling the program its machine language
equivalent is stored as an EXE file (Program1.EXE) on the disk.
This file is called an executable file. If we copy this file to another
machine we can execute it there without being required to
recompile it. In fact the other machine need not even have a
compiler to be able to execute the file.

A word of caution! If you run this program in Turbo C++
compiler, you may get an error — “The function printf should
have a prototype”. To get rid of this error, perform the following
steps and then recompile the program.

Select ‘Options’ menu and then select ‘Compiler | C++
Options’. In the dialog box that pops up, select ‘CPP always’
in the ‘Use C++ Compiler’ options.
Again select ‘Options’ menu and then select ‘Environment |
Editor’. Make sure that the default extension is ‘C’ rather than
‘CPP’.

Chapter 1: Getting Started 21

Receiving Input
In the program discussed above we assumed the values of p, n and
r to be 1000, 3 and 8.5. Every time we run the program we would
get the same value for simple interest. If we want to calculate
simple interest for some other set of values then we are required to
make the relevant change in the program, and again compile and
execute it. Thus the program is not general enough to calculate
simple interest for any set of values without being required to
make a change in the program. Moreover, if you distribute the
EXE file of this program to somebody he would not even be able
to make changes in the program. Hence it is a good practice to
create a program that is general enough to work for any set of
values.

To make the program general the program itself should ask the
user to supply the values of p, n and r through the keyboard during
execution. This can be achieved using a function called scanf().
This function is a counter-part of the printf() function. printf()
outputs the values to the screen whereas scanf() receives them
from the keyboard. This is illustrated in the program shown below.

/* Calculation of simple interest */
/* Author gekay Date 25/05/2004 */
main()
{
 int p, n ;
 float r, si ;
 printf ("Enter values of p, n, r") ;
 scanf ("%d %d %f", &p, &n, &r) ;

 si = p * n * r / 100 ;
 printf ("%f" , si) ;
}

22 Let Us C

The first printf() outputs the message ‘Enter values of p, n, r’ on
the screen. Here we have not used any expression in printf()
which means that using expressions in printf() is optional.

Note that the ampersand (&) before the variables in the scanf()
function is a must. & is an ‘Address of’ operator. It gives the
location number used by the variable in memory. When we say
&a, we are telling scanf() at which memory location should it
store the value supplied by the user from the keyboard. The
detailed working of the & operator would be taken up in Chapter
5.

Note that a blank, a tab or a new line must separate the values
supplied to scanf(). Note that a blank is creating using a spacebar,
tab using the Tab key and new line using the Enter key. This is
shown below:

Ex.: The three values separated by blank
 1000 5 15.5

Ex.: The three values separated by tab.

 1000 5 15.5
Ex.: The three values separated by newline.

 1000
 5
 15.5

So much for the tips. How about another program to give you a
feel of things...

/* Just for fun. Author: Bozo */
main()
{
 int num ;

 printf ("Enter a number") ;

Chapter 1: Getting Started 23

 scanf ("%d", &num) ;

 printf ("Now I am letting you on a secret...") ;
 printf ("You have just entered the number %d", num) ;
}

C Instructions
Now that we have written a few programs let us look at the
instructions that we used in these programs. There are basically
three types of instructions in C:

(a)
(b)
(c)

(a)

(b)

(c)

Type Declaration Instruction
Arithmetic Instruction
Control Instruction

The purpose of each of these instructions is given below:

Type declaration instruction − To declare the type of
variables used in a C
program.

Arithmetic instruction − To perform arithmetic

operations between con-
stants and variables.

Control instruction − To control the sequence of

execution of various state-
ments in a C program.

Since, the elementary C programs would usually contain only the
type declaration and the arithmetic instructions; we would discuss
only these two instructions at this stage. The other types of
instructions would be discussed in detail in the subsequent
chapters.

24 Let Us C

Type Declaration Instruction

This instruction is used to declare the type of variables being used
in the program. Any variable used in the program must be declared
before using it in any statement. The type declaration statement is
written at the beginning of main() function.

Ex.: int bas ;
 float rs, grosssal ;
 char name, code ;

There are several subtle variations of the type declaration
instruction. These are discussed below:

(a)

(b)

While declaring the type of variable we can also initialize it as
shown below.

int i = 10, j = 25 ;
float a = 1.5, b = 1.99 + 2.4 * 1.44 ;

The order in which we define the variables is sometimes
important sometimes not. For example,

int i = 10, j = 25 ;

is same as

int j = 25, j = 10 ;

However,

float a = 1.5, b = a + 3.1 ;

is alright, but

float b = a + 3.1, a = 1.5 ;

Chapter 1: Getting Started 25

is not. This is because here we are trying to use a even before
defining it.

(c) The following statements would work

int a, b, c, d ;
a = b = c = 10 ;

However, the following statement would not work

int a = b = c = d = 10 ;

Once again we are trying to use b (to assign to a) before
defining it.

Arithmetic Instruction

A C arithmetic instruction consists of a variable name on the left
hand side of = and variable names & constants on the right hand
side of =. The variables and constants appearing on the right hand
side of = are connected by arithmetic operators like +, -, *, and /.

Ex.: int ad ;
 float kot, deta, alpha, beta, gamma ;
 ad = 3200 ;
 kot = 0.0056 ;
 deta = alpha * beta / gamma + 3.2 * 2 / 5 ;

Here,

*, /, -, + are the arithmetic operators.
= is the assignment operator.
2, 5 and 3200 are integer constants.
3.2 and 0.0056 are real constants.
ad is an integer variable.
kot, deta, alpha, beta, gamma are real variables.

26 Let Us C

The variables and constants together are called ‘operands’ that are
operated upon by the ‘arithmetic operators’ and the result is
assigned, using the assignment operator, to the variable on left-
hand side.

A C arithmetic statement could be of three types. These are as
follows:

(a)

(b)

(c)

Integer mode arithmetic statement - This is an arithmetic
statement in which all operands are either integer variables or
integer constants.

Ex.: int i, king, issac, noteit ;
 i = i + 1 ;
 king = issac * 234 + noteit - 7689 ;

Real mode arithmetic statement - This is an arithmetic
statement in which all operands are either real constants or
real variables.

Ex.: float qbee, antink, si, prin, anoy, roi ;
 qbee = antink + 23.123 / 4.5 * 0.3442 ;
 si = prin * anoy * roi / 100.0 ;

Mixed mode arithmetic statement - This is an arithmetic
statement in which some of the operands are integers and
some of the operands are real.

Ex.: float si, prin, anoy, roi, avg ;
 int a, b, c, num ;
 si = prin * anoy * roi / 100.0 ;
 avg = (a + b + c + num) / 4 ;

It is very important to understand how the execution of an
arithmetic statement takes place. Firstly, the right hand side is
evaluated using constants and the numerical values stored in the
variable names. This value is then assigned to the variable on the
left-hand side.

Chapter 1: Getting Started 27

Though Arithmetic instructions look simple to use one often
commits mistakes in writing them. Let us take a closer look at
these statements. Note the following points carefully.

(a)

(b)

(c)

(d)

C allows only one variable on left-hand side of =. That is, z =
k * l is legal, whereas k * l = z is illegal.

In addition to the division operator C also provides a modular
division operator. This operator returns the remainder on
dividing one integer with another. Thus the expression 10 / 2
yields 5, whereas, 10 % 2 yields 0. Note that the modulus
operator (%) cannot be applied on a float. Also note that on
using % the sign of the remainder is always same as the sign
of the numerator. Thus –5 % 2 yields –1, whereas, 5 % -2
yields 1.

An arithmetic instruction is often used for storing character
constants in character variables.

char a, b, d ;
a = 'F' ;
b = 'G' ;
d = '+' ;

When we do this the ASCII values of the characters are stored
in the variables. ASCII values are used to represent any
character in memory. The ASCII values of ‘F’ and ‘G’ are 70
and 71 (refer the ASCII Table in Appendix E).

Arithmetic operations can be performed on ints, floats and
chars.

Thus the statements,

char x, y ;
int z ;
x = 'a' ;
y = 'b' ;
z = x + y ;

28 Let Us C

are perfectly valid, since the addition is performed on the
ASCII values of the characters and not on characters
themselves. The ASCII values of ‘a’ and ‘b’ are 97 and 98,
and hence can definitely be added.

(e)

(f)

No operator is assumed to be present. It must be written
explicitly. In the following example, the multiplication
operator after b must be explicitly written.

a = c.d.b(xy) usual arithmetic statement
b = c * d * b * (x * y) C statement

Unlike other high level languages, there is no operator for
performing exponentiation operation. Thus following
statements are invalid.

a = 3 ** 2 ;
b = 3 ^ 2 ;

If we want to do the exponentiation we can get it done this
way:

#include <math.h>
main()
{
 int a ;
 a = pow (3, 2) ;
 printf (“%d”, a) ;
}

Here pow() function is a standard library function. It is being
used to raise 3 to the power of 2. #include <math.h> is a
preprocessor directive. It is being used here to ensure that the
pow() function works correctly. We would learn more about
standard library functions in Chapter 5 and about preprocessor
in Chapter 7.

Chapter 1: Getting Started 29

Integer and Float Conversions

In order to effectively develop C programs, it will be necessary to
understand the rules that are used for the implicit conversion of
floating point and integer values in C. These are mentioned below.
Note them carefully.

(a)

(b)

(c)

An arithmetic operation between an integer and integer
always yields an integer result.

An operation between a real and real always yields a real
result.

An operation between an integer and real always yields a real
result. In this operation the integer is first promoted to a real
and then the operation is performed. Hence the result is real.

I think a few practical examples shown in the following figure
would put the issue beyond doubt.

 Operation Result Operation Result

 5 / 2 2 2 / 5 0
 5.0 / 2 2.5 2.0 / 5 0.4
 5 / 2.0 2.5 2 / 5.0 0.4
 5.0 / 2.0 2.5 2.0 / 5.0 0.4

Figure 1.6

Type Conversion in Assignments

It may so happen that the type of the expression and the type of the
variable on the left-hand side of the assignment operator may not
be same. In such a case the value of the expression is promoted or

30 Let Us C

demoted depending on the type of the variable on left-hand side of
=.

For example, consider the following assignment statements.

int i ;
float b ;
i = 3.5 ;
b = 30 ;

Here in the first assignment statement though the expression’s
value is a float (3.5) it cannot be stored in i since it is an int. In
such a case the float is demoted to an int and then its value is
stored. Hence what gets stored in i is 3. Exactly opposite happens
in the next statement. Here, 30 is promoted to 30.000000 and then
stored in b, since b being a float variable cannot hold anything
except a float value.

Instead of a simple expression used in the above examples if a
complex expression occurs, still the same rules apply. For
example, consider the following program fragment.

float a, b, c ;
int s ;
s = a * b * c / 100 + 32 / 4 - 3 * 1.1 ;

Here, in the assignment statement some operands are ints whereas
others are floats. As we know, during evaluation of the expression
the ints would be promoted to floats and the result of the
expression would be a float. But when this float value is assigned
to s it is again demoted to an int and then stored in s.

Observe the results of the arithmetic statements shown in Figure
1.7. It has been assumed that k is an integer variable and a is a real
variable.

Chapter 1: Getting Started 31

 Arithmetic Instruction Result Arithmetic Instruction Result

 k = 2 / 9 0 a = 2 / 9 0.0
 k = 2.0 / 9 0 a = 2.0 / 9 0.2222
 k = 2 / 9.0 0 a = 2 / 9.0 0.2222
 k = 2.0 / 9.0 0 a = 2.0 / 9.0 0.2222
 k = 9 / 2 4 a = 9 / 2 4.0
 k = 9.0 / 2 4 a = 9.0 / 2 4.5
 k = 9 / 2.0 4 a = 9 / 2.0 4.5
 k = 9.0 / 2.0 4 a = 9.0 / 2.0 4.5

Figure 1.7

Note that though the following statements give the same result, 0,
the results are obtained differently.

k = 2 / 9 ;
k = 2.0 / 9 ;

In the first statement, since both 2 and 9 are integers, the result is
an integer, i.e. 0. This 0 is then assigned to k. In the second
statement 9 is promoted to 9.0 and then the division is performed.
Division yields 0.222222. However, this cannot be stored in k, k
being an int. Hence it gets demoted to 0 and then stored in k.

Hierarchy of Operations

While executing an arithmetic statement, which has two or more
operators, we may have some problems as to how exactly does it
get executed. For example, does the expression 2 * x - 3 * y
correspond to (2x)-(3y) or to 2(x-3y)? Similarly, does A / B * C
correspond to A / (B * C) or to (A / B) * C? To answer these
questions satisfactorily one has to understand the ‘hierarchy’ of
operations. The priority or precedence in which the operations in

32 Let Us C

an arithmetic statement are performed is called the hierarchy of
operations. The hierarchy of commonly used operators is shown in
Figure 1.8.

 Priority Operators Description

 1st * / % multiplication, division, modular division
 2nd + - addition, subtraction
 3rd = assignment

Figure 1.8

Now a few tips about usage of operators in general.

(a)

(b)

Within parentheses the same hierarchy as mentioned in Figure
1.11 is operative. Also, if there are more than one set of
parentheses, the operations within the innermost parentheses
would be performed first, followed by the operations within
the second innermost pair and so on.

We must always remember to use pairs of parentheses. A
careless imbalance of the right and left parentheses is a
common error. Best way to avoid this error is to type () and
then type an expression inside it.

A few examples would clarify the issue further.

Example 1.1: Determine the hierarchy of operations and evaluate
the following expression:

i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

Stepwise evaluation of this expression is shown below:

i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

Chapter 1: Getting Started 33

i = 6 / 4 + 4 / 4 + 8 - 2 + 5 / 8 operation: *
i = 1 + 4 / 4 + 8 - 2 + 5 / 8 operation: /
i = 1 + 1+ 8 - 2 + 5 / 8 operation: /
i = 1 + 1 + 8 - 2 + 0 operation: /
i = 2 + 8 - 2 + 0 operation: +
i = 10 - 2 + 0 operation: +
i = 8 + 0 operation : -
i = 8 operation: +

Note that 6 / 4 gives 1 and not 1.5. This so happens because 6 and
4 both are integers and therefore would evaluate to only an integer
constant. Similarly 5 / 8 evaluates to zero, since 5 and 8 are integer
constants and hence must return an integer value.

Example 1.2: Determine the hierarchy of operations and evaluate
the following expression:

kk = 3 / 2 * 4 + 3 / 8 + 3

Stepwise evaluation of this expression is shown below:

kk = 3 / 2 * 4 + 3 / 8 + 3
kk = 1 * 4 + 3 / 8 + 3 operation: /
kk = 4 + 3 / 8 + 3 operation: *
kk = 4 + 0 + 3 operation: /
kk = 4 + 3 operation: +
kk = 7 operation: +

Note that 3 / 8 gives zero, again for the same reason mentioned in
the previous example.

All operators in C are ranked according to their precedence. And
mind you there are as many as 45 odd operators in C, and these
can affect the evaluation of an expression in subtle and unexpected
ways if we aren't careful. Unfortunately, there are no simple rules
that one can follow, such as “BODMAS” that tells algebra students
in which order does an expression evaluate. We have not

34 Let Us C

encountered many out of these 45 operators, so we won’t pursue
the subject of precedence any further here. However, it can be
realized at this stage that it would be almost impossible to
remember the precedence of all these operators. So a full-fledged
list of all operators and their precedence is given in Appendix A.
This may sound daunting, but when its contents are absorbed in
small bites, it becomes more palatable.

So far we have seen how the computer evaluates an arithmetic
statement written in C. But our knowledge would be incomplete
unless we know how to convert a general arithmetic statement to a
C statement. C can handle any complex expression with ease.
Some of the examples of C expressions are shown in Figure 1.9.

e d
c b a

+
++

⎥
⎦

⎤
⎢
⎣

⎡
+

−
+)(31

2
yz

x
d

BY

 Algebric Expression C Expression

 a x b – c x d a * b – c * d

 (m + n) (a + b) (m + n) * (a + b)

 3x2 + 2x + 5 3 * x * x + 2 * x + 5

(a + b + c) / (d + e)

 2 * b * y / (d + 1) – x /
3 * (z + y)

Figure 1.9

Associativity of Operators

When an expression contains two operators of equal priority the tie
between them is settled using the associativity of the operators.
Associativity can be of two types—Left to Right or Right to Left.
Left to Right associativity means that the left operand must be

Chapter 1: Getting Started 35

unambiguous. Unambiguous in what sense? It must not be
involved in evaluation of any other sub-expression. Similarly, in
case of Right to Left associativity the right operand must be
unambiguous. Let us understand this with an example.

Consider the expression

a = 3 / 2 * 5 ;

Here there is a tie between operators of same priority, that is
between / and *. This tie is settled using the associativity of / and
*. But both enjoy Left to Right associativity. Figure 1.10 shows for
each operator which operand is unambiguous and which is not.

 Operator Left Right Remark

 / 3 2 or 2 *
5

Left operand is
unambiguous, Right is not

 * 3 / 2 or 2 5 Right operand is
unambiguous, Left is not

Figure 1.10

Since both / and * have L to R associativity and only / has
unambiguous left operand (necessary condition for L to R
associativity) it is performed earlier.

Consider one more expression
a = b = 3 ;
Here both assignment operators have the same priority and same
associativity (Right to Left). Figure 1.11 shows for each operator
which operand is unambiguous and which is not.

36 Let Us C

 Operator Left Right Remark

 = a b or b =
3

Left operand is
unambiguous, Right is
not

 = b or a = b 3 Right operand is
unambiguous, Left is not

Figure 1.11

Since both = have R to L associativity and only the second = has
unambiguous right operand (necessary condition for R to L
associativity) the second = is performed earlier.

Consider yet another expression

z = a * b + c / d ;
Here * and / enjoys same priority and same associativity (Left to
Right). Figure 1.12 shows for each operator which operand is
unambiguous and which is not.

 Operator Left Right Remark

 * a b Both operands are unambiguous

 / c d Both operands are unambiguous

Figure 1.12

Here since left operands for both operators are unambiguous
Compiler is free to perform * or / operation as per its convenience

Chapter 1: Getting Started 37

since no matter which is performed earlier the result would be
same.

Appendix A gives the associativity of all the operators available in
C.

Control Instructions in C
As the name suggests the ‘Control Instructions’ enable us to
specify the order in which the various instructions in a program are
to be executed by the computer. In other words the control
instructions determine the ‘flow of control’ in a program. There
are four types of control instructions in C. They are:

(a) Sequence Control Instruction
(b) Selection or Decision Control Instruction
(c) Repetition or Loop Control Instruction
(d) Case Control Instruction

The Sequence control instruction ensures that the instructions are
executed in the same order in which they appear in the program.
Decision and Case control instructions allow the computer to take
a decision as to which instruction is to be executed next. The Loop
control instruction helps computer to execute a group of statements
repeatedly. In the following chapters we are going to learn these
instructions in detail. Try your hand at the Exercise presented on
the following pages before proceeding to the next chapter, which
discusses the decision control instruction.

Summary
(a)

(b)
(c)

The three primary constants and variable types in C are
integer, float and character.
A variable name can be of maximum 31 characters.
Do not use a keyword as a variable name.

38 Let Us C

(d)

(e)

(f)

(g)

An expression may contain any sequence of constants,
variables and operators.
Operators having equal precedence are evaluated using
associativity.
Left to right associativity means that the left operand of a
operator must be unambiguous whereas right to left
associativity means that the right operand of a operator must
be unambiguous.
Input/output in C can be achieved using scanf() and printf()
functions.

Exercise

[A] Which of the following are invalid variable names and why?

BASICSALARY _basic basic-hra
#MEAN group. 422
population in 2006 over time mindovermatter
FLOAT hELLO queue.
team’svictory Plot # 3 2015_DDay

[B] Point out the errors, if any, in the following C statements:

(a) int = 314.562 * 150 ;

(b) name = ‘Ajay’ ;

(c) varchar = ‘3’ ;

(d) 3.14 * r * r * h = vol_of_cyl ;

(e) k = (a * b) (c + (2.5a + b) (d + e) ;

(f) m_inst = rate of interest * amount in rs ;

Chapter 1: Getting Started 39

(g) si = principal * rateofinterest * numberofyears / 100 ;

(h) area = 3.14 * r ** 2 ;

(i) volume = 3.14 * r ^ 2 * h ;

(j) k = ((a * b) + c) (2.5 * a + b) ;

(k) a = b = 3 = 4 ;

(l) count = count + 1 ;

(m) date = '2 Mar 04' ;

[C] Evaluate the following expressions and show their hierarchy.

(a) g = big / 2 + big * 4 / big - big + abc / 3 ;
(abc = 2.5, big = 2, assume g to be a float)

(b) on = ink * act / 2 + 3 / 2 * act + 2 + tig ;
(ink = 4, act = 1, tig = 3.2, assume on to be an int)

(c) s = qui * add / 4 - 6 / 2 + 2 / 3 * 6 / god ;
(qui = 4, add = 2, god = 2, assume s to be an int)

(d) s = 1 / 3 * a / 4 - 6 / 2 + 2 / 3 * 6 / g ;
(a = 4, g = 3, assume s to be an int)

[D] Fill the following table for the expressions given below and
then evaluate the result. A sample entry has been filled in the
table for expression (a).

40 Let Us C

 Operator Left Right Remark

 / 10 5 or 5 / 2
/ 1

Left operand is
unambiguous, Right
is not

(a) g = 10 / 5 /2 / 1 ;

(b) b = 3 / 2 + 5 * 4 / 3 ;

(c) a = b = c = 3 + 4 ;

[E] Convert the following equations into corresponding C
statements.

) m / 1 (*) b a (
)r q (/ a 2 0.5 - c / 2) b a (8.8 Z

+
+++

=(a)

2a
 4ac 2) b * b (b- X ++

=(b)

(c)

 v g
) d c (6.22 2v R

+
++

=

7.7b (xy + a) / c - 0.8 + 2bA = (d)

(x + a) (1 / y)

[F] What would be the output of the following programs:

(a) main()

{

Chapter 1: Getting Started 41

int i = 2, j = 3, k, l ;
float a, b ;
k = i / j * j ;
l = j / i * i ;
a = i / j * j ;
b = j / i * i ;
printf("%d %d %f %f", k, l, a, b) ;

}

(b) main()
{

int a, b ;
a = -3 - - 3 ;
b = -3 - - (- 3) ;
printf ("a = %d b = %d", a, b) ;

}

(c) main()
{

float a = 5, b = 2 ;
int c ;
c = a % b ;
printf ("%d", c) ;

}

(d) main()
{

printf ("nn \n\n nn\n") ;
printf ("nn /n/n nn/n") ;

}

(e) main()
{

int a, b ;
printf ("Enter values of a and b") ;
scanf (" %d %d ", &a, &b) ;
printf ("a = %d b = %d", a, b) ;

}

42 Let Us C

(f) main()

{
int p, q ;
printf ("Enter values of p and q") ;
scanf (" %d %d ", p, q) ;
printf ("p = %d q =%d", p, q) ;

}

[G] Pick up the correct alternative for each of the following

questions:

(a) C language has been developed by

(1) Ken Thompson
(2) Dennis Ritchie
(3) Peter Norton
(4) Martin Richards

(b) C can be used on

(1) Only MS-DOS operating system
(2) Only Linux operating system
(3) Only Windows operating system
(4) All the above

(c) C programs are converted into machine language with the

help of
(1) An Editor
(2) A compiler
(3) An operating system
(4) None of the above

(d) The real constant in C can be expressed in which of the

following forms
(1) Fractional form only
(2) Exponential form only
(3) ASCII form only

Chapter 1: Getting Started 43

(4) Both fractional and exponential forms

(e) A character variable can at a time store

(1) 1 character
(2) 8 characters
(3) 254 characters
(4) None of the above

(f) The statement char ch = ‘Z’ would store in ch

(1) The character Z
(2) ASCII value of Z
(3) Z along with the single inverted commas
(4) Both (1) and (2)

(g) Which of the following is NOT a character constant

(1) ‘Thank You’
(2) ‘Enter values of P, N, R’
(3) ‘23.56E-03’
(4) All the above

(h) The maximum value that an integer constant can have is

(1) -32767
(2) 32767
(3) 1.7014e+38
(4) –1.7014e+38

(i) A C variable cannot start with

(1) An alphabet
(2) A number
(3) A special symbol other than underscore
(4) Both (2) & (3) above

(j) Which of the following statement is wrong

(1) mes = 123.56 ;
(2) con = 'T' * 'A' ;
(3) this = 'T' * 20 ;
(4) 3 + a = b ;

44 Let Us C

(k) Which of the following shows the correct hierarchy of

arithmetic operators in C
(1) **, * or /, + or -
(2) **, *, /, +, -
(3) **, /, *, +, -
(4) / or *, - or +

(l) In b = 6.6 / a + 2 * n ; which operation will be performed

first?
(1) 6.6 / a
(2) a + 2
(3) 2 * n
(4) Depends upon compiler

(m) Which of the following is allowed in a C Arithmetic

instruction
(1) []
(2) { }
(3) ()
(4) None of the above

(n) Which of the following statements is false

(1) Each new C instruction has to be written on a separate
line

(2) Usually all C statements are entered in small case letters
(3) Blank spaces may be inserted between two words in a C

statement
(4) Blank spaces cannot be inserted within a variable name

(o) If a is an integer variable, a = 5 / 2 ; will return a value

(1) 2.5
(2) 3
(3) 2
(4) 0

(p) The expression, a = 7 / 22 * (3.14 + 2) * 3 / 5 ; evaluates to

Chapter 1: Getting Started 45

(1) 8.28
(2) 6.28
(3) 3.14
(4) 0

(q) The expression, a = 30 * 1000 + 2768 ; evaluates to

(1) 32768
(2) -32768
(3) 113040
(4) 0

(r) The expression x = 4 + 2 % - 8 evaluates to

(1) -6
(2) 6
(3) 4
(4) None of the above

(s) Hierarchy decides which operator

(1) is most important
(2) is used first
(3) is fastest
(4) operates on largest numbers

(t) An integer constant in C must have:

(1) At least one digit
(2) Atleast one decimal point
(3) A comma along with digits
(4) Digits separated by commas

(u) A character variable can never store more than

(1) 32 characters
(2) 8 characters
(3) 254 characters
(4) 1 character

(v) In C a variable cannot contain

(1) Blank spaces

46 Let Us C

(2) Hyphen
(3) Decimal point
(4) All the above

(w) Which of the following is FALSE in C

(1) Keywords can be used as variable names
(2) Variable names can contain a digit
(3) Variable names do not contain a blank space
(4) Capital letters can be used in variable names

(x) In C, Arithmetic instruction cannot contain

(1) variables
(2) constants
(3) variable names on right side of =
(4) constants on left side of =

(y) Which of the following shows the correct hierarchy of

arithmetic operations in C
(1) / + * -
(2) * - / +
(3) + - / *
(4) * / + -

(z) What will be the value of d if d is a float after the operation

d = 2 / 7.0?
(1) 0
(2) 0.2857
(3) Cannot be determined
(4) None of the above

[H] Write C programs for the following:

(a) Ramesh’s basic salary is input through the keyboard. His

dearness allowance is 40% of basic salary, and house rent
allowance is 20% of basic salary. Write a program to calculate
his gross salary.

Chapter 1: Getting Started 47

(b) The distance between two cities (in km.) is input through the
keyboard. Write a program to convert and print this distance
in meters, feet, inches and centimeters.

(c) If the marks obtained by a student in five different subjects

are input through the keyboard, find out the aggregate marks
and percentage marks obtained by the student. Assume that
the maximum marks that can be obtained by a student in each
subject is 100.

(d) Temperature of a city in Fahrenheit degrees is input through

the keyboard. Write a program to convert this temperature
into Centigrade degrees.

(e) The length & breadth of a rectangle and radius of a circle are

input through the keyboard. Write a program to calculate the
area & perimeter of the rectangle, and the area &
circumference of the circle.

(f) Two numbers are input through the keyboard into two

locations C and D. Write a program to interchange the
contents of C and D.

(g) If a five-digit number is input through the keyboard, write a

program to calculate the sum of its digits.

(Hint: Use the modulus operator ‘%’)

(h) If a five-digit number is input through the keyboard, write a
program to reverse the number.

(i) If a four-digit number is input through the keyboard, write a

program to obtain the sum of the first and last digit of this
number.

(j) In a town, the percentage of men is 52. The percentage of

total literacy is 48. If total percentage of literate men is 35 of
the total population, write a program to find the total number

48 Let Us C

of illiterate men and women if the population of the town is
80,000.

(k) A cashier has currency notes of denominations 10, 50 and

100. If the amount to be withdrawn is input through the
keyboard in hundreds, find the total number of currency notes
of each denomination the cashier will have to give to the
withdrawer.

(l) If the total selling price of 15 items and the total profit earned

on them is input through the keyboard, write a program to
find the cost price of one item.

(m) If a five-digit number is input through the keyboard, write a

program to print a new number by adding one to each of its
digits. For example if the number that is input is 12391 then
the output should be displayed as 23402.

2 The Decision
 Control Structure

• Decisions! Decisions!
• The if Statement

The Real Thing
Multiple Statements within if

• The if-else Statement
Nested if-elses
Forms of if

• Use of Logical Operators
The else if Clause
The ! Operator
Hierarchy of Operators Revisited

• A Word of Caution
• The Conditional Operators
• Summary
• Exercise

49

50 Let Us C

e all need to alter our actions in the face of changing
circumstances. If the weather is fine, then I will go for a
stroll. If the highway is busy I would take a diversion.

If the pitch takes spin, we would win the match. If she says no, I
would look elsewhere. If you like this book, I would write the next
edition. You can notice that all these decisions depend on some
condition being met.

W
C language too must be able to perform different sets of actions
depending on the circumstances. In fact this is what makes it worth
its salt. C has three major decision making instructions—the if
statement, the if-else statement, and the switch statement. A
fourth, somewhat less important structure is the one that uses
conditional operators. In this chapter we will explore all these
ways (except switch, which has a separate chapter devoted to it,
later) in which a C program can react to changing circumstances.

Decisions! Decisions!
In the programs written in Chapter 1 we have used sequence
control structure in which the various steps are executed
sequentially, i.e. in the same order in which they appear in the
program. In fact to execute the instructions sequentially, we don’t
have to do anything at all. By default the instructions in a program
are executed sequentially. However, in serious programming
situations, seldom do we want the instructions to be executed
sequentially. Many a times, we want a set of instructions to be
executed in one situation, and an entirely different set of
instructions to be executed in another situation. This kind of
situation is dealt in C programs using a decision control
instruction. As mentioned earlier, a decision control instruction
can be implemented in C using:

The if statement (a)
(b)
(c)

The if-else statement
The conditional operators

Chapter 2: The Decision Control Structure 51

Now let us learn each of these and their variations in turn.

The if Statement
Like most languages, C uses the keyword if to implement the
decision control instruction. The general form of if statement looks
like this:

if (this condition is true)
 execute this statement ;

The keyword if tells the compiler that what follows is a decision
control instruction. The condition following the keyword if is
always enclosed within a pair of parentheses. If the condition,
whatever it is, is true, then the statement is executed. If the
condition is not true then the statement is not executed; instead the
program skips past it. But how do we express the condition itself
in C? And how do we evaluate its truth or falsity? As a general
rule, we express a condition using C’s ‘relational’ operators. The
relational operators allow us to compare two values to see whether
they are equal to each other, unequal, or whether one is greater
than the other. Here’s how they look and how they are evaluated in
C.

 this expression is true if

 x == y x is equal to y
 x != y x is not equal to y
 x < y x is less than y
 x > y x is greater than y
 x <= y x is less than or equal to y
 x >= y x is greater than or equal to y

Figure 2.1

52 Let Us C

The relational operators should be familiar to you except for the
equality operator == and the inequality operator !=. Note that = is
used for assignment, whereas, == is used for comparison of two
quantities. Here is a simple program, which demonstrates the use
of if and the relational operators.

/* Demonstration of if statement */
main()
{
 int num ;

 printf ("Enter a number less than 10 ") ;
 scanf ("%d", &num) ;

 if (num <= 10)
 printf ("What an obedient servant you are !") ;
}

On execution of this program, if you type a number less than or
equal to 10, you get a message on the screen through printf(). If
you type some other number the program doesn’t do anything. The
following flowchart would help you understand the flow of control
in the program.

Chapter 2: The Decision Control Structure 53

INPUT num

 is
num > 10

yes no

PRINT What an obedient
servant you are !

PRINT enter a num
less than 10

STOP

START

Figure 2.2

To make you comfortable with the decision control instruction one
more example has been given below. Study it carefully before
reading further. To help you understand it easily, the program is
accompanied by an appropriate flowchart.

Example 2.1: While purchasing certain items, a discount of 10%
is offered if the quantity purchased is more than 1000. If quantity
and price per item are input through the keyboard, write a program
to calculate the total expenses.

54 Let Us C

INPUT
qty, rate

 is
qty > 1000

dis = 10

yes

tot = qty * rate – qty * rate * dis / 100

PRINT
tot

no

STOP

dis = 0

START

Figure 2.3

/* Calculation of total expenses */
main()
{
 int qty, dis = 0 ;
 float rate, tot ;
 printf ("Enter quantity and rate ") ;
 scanf ("%d %f", &qty, &rate) ;

 if (qty > 1000)
 dis = 10 ;

Chapter 2: The Decision Control Structure 55

 tot = (qty * rate) - (qty * rate * dis / 100) ;
 printf ("Total expenses = Rs. %f", tot) ;
}

Here is some sample interaction with the program.

Enter quantity and rate 1200 15.50
Total expenses = Rs. 16740.000000

Enter quantity and rate 200 15.50
Total expenses = Rs. 3100.000000

In the first run of the program, the condition evaluates to true, as
1200 (value of qty) is greater than 1000. Therefore, the variable
dis, which was earlier set to 0, now gets a new value 10. Using this
new value total expenses are calculated and printed.

In the second run the condition evaluates to false, as 200 (the value
of qty) isn’t greater than 1000. Thus, dis, which is earlier set to 0,
remains 0, and hence the expression after the minus sign evaluates
to zero, thereby offering no discount.

Is the statement dis = 0 necessary? The answer is yes, since in C, a
variable if not specifically initialized contains some unpredictable
value (garbage value).

The Real Thing

We mentioned earlier that the general form of the if statement is as
follows

if (condition)
 statement ;

Truly speaking the general form is as follows:

56 Let Us C

if (expression)
 statement ;
Here the expression can be any valid expression including a
relational expression. We can even use arithmetic expressions in
the if statement. For example all the following if statements are
valid

if (3 + 2 % 5)
 printf ("This works") ;

if (a = 10)
 printf ("Even this works") ;

if (-5)
 printf ("Surprisingly even this works") ;

Note that in C a non-zero value is considered to be true, whereas a
0 is considered to be false. In the first if, the expression evaluates
to 5 and since 5 is non-zero it is considered to be true. Hence the
printf() gets executed.

In the second if, 10 gets assigned to a so the if is now reduced to if
(a) or if (10). Since 10 is non-zero, it is true hence again
printf() goes to work.

In the third if, -5 is a non-zero number, hence true. So again
printf() goes to work. In place of -5 even if a float like 3.14 were
used it would be considered to be true. So the issue is not whether
the number is integer or float, or whether it is positive or negative.
Issue is whether it is zero or non-zero.

Multiple Statements within if

It may so happen that in a program we want more than one
statement to be executed if the expression following if is satisfied.
If such multiple statements are to be executed then they must be

Chapter 2: The Decision Control Structure 57

placed within a pair of braces as illustrated in the following
example.

Example 2.2: The current year and the year in which the
employee joined the organization are entered through the
keyboard. If the number of years for which the employee has
served the organization is greater than 3 then a bonus of Rs. 2500/-
is given to the employee. If the years of service are not greater
than 3, then the program should do nothing.

/* Calculation of bonus */
main()
{
 int bonus, cy, yoj, yr_of_ser ;

 printf ("Enter current year and year of joining ") ;
 scanf ("%d %d", &cy, &yoj) ;

 yr_of_ser = cy - yoj ;

 if (yr_of_ser > 3)
 {
 bonus = 2500 ;
 printf ("Bonus = Rs. %d", bonus) ;
 }
}

Observe that here the two statements to be executed on satisfaction
of the condition have been enclosed within a pair of braces. If a
pair of braces is not used then the C compiler assumes that the
programmer wants only the immediately next statement after the if
to be executed on satisfaction of the condition. In other words we
can say that the default scope of the if statement is the immediately
next statement after it.

58 Let Us C

INPUT
cy, yoj

yr_of_ser > 3

bonus = 2500

yes

yr_of_ser = cy - yoj

no

STOP

PRINT
bonus

START

Figure 2.4

The if-else Statement
The if statement by itself will execute a single statement, or a
group of statements, when the expression following if evaluates to
true. It does nothing when the expression evaluates to false. Can
we execute one group of statements if the expression evaluates to
true and another group of statements if the expression evaluates to
false? Of course! This is what is the purpose of the else statement
that is demonstrated in the following example:

Example 2.3: In a company an employee is paid as under:

Chapter 2: The Decision Control Structure 59

If his basic salary is less than Rs. 1500, then HRA = 10% of basic
salary and DA = 90% of basic salary. If his salary is either equal to
or above Rs. 1500, then HRA = Rs. 500 and DA = 98% of basic
salary. If the employee's salary is input through the keyboard write
a program to find his gross salary.

/* Calculation of gross salary */
main()
{
 float bs, gs, da, hra ;

 printf ("Enter basic salary ") ;
 scanf ("%f", &bs) ;

 if (bs < 1500)
 {
 hra = bs * 10 / 100 ;
 da = bs * 90 / 100 ;
 }
 else
 {
 hra = 500 ;
 da = bs * 98 / 100 ;
 }

 gs = bs + hra + da ;
 printf ("gross salary = Rs. %f", gs) ;
}

60 Let Us C

Figure 2.5

INPUT
bs

 is
bs < 1500

hra = bs * 10 / 100

gs = bs + hra + da

PRINT
 gs

da = bs * 90 / 100

hra = 500

da = bs * 98 / 100

STOP

START

Figure 2.5

A few points worth noting...

The group of statements after the if upto and not including the
else is called an ‘if block’. Similarly, the statements after the
else form the ‘else block’.

(a)

(b) Notice that the else is written exactly below the if. The
statements in the if block and those in the else block have
been indented to the right. This formatting convention is

Chapter 2: The Decision Control Structure 61

followed throughout the book to enable you to understand the
working of the program better.

(c)

(d)

Had there been only one statement to be executed in the if
block and only one statement in the else block we could have
dropped the pair of braces.

As with the if statement, the default scope of else is also the
statement immediately after the else. To override this default
scope a pair of braces as shown in the above example must be
used.

Nested if-elses

It is perfectly all right if we write an entire if-else construct within
either the body of the if statement or the body of an else statement.
This is called ‘nesting’of ifs. This is shown in the following
program.

/* A quick demo of nested if-else */
main()
{
 int i ;

 printf ("Enter either 1 or 2 ") ;
 scanf ("%d", &i) ;

 if (i == 1)
 printf ("You would go to heaven !") ;
 else
 {
 if (i == 2)
 printf ("Hell was created with you in mind") ;
 else
 printf ("How about mother earth !") ;
 }
}

62 Let Us C

Note that the second if-else construct is nested in the first else
statement. If the condition in the first if statement is false, then the
condition in the second if statement is checked. If it is false as
well, then the final else statement is executed.

You can see in the program how each time a if-else construct is
nested within another if-else construct, it is also indented to add
clarity to the program. Inculcate this habit of indentation,
otherwise you would end up writing programs which nobody (you
included) can understand easily at a later date.

In the above program an if-else occurs within the else block of the
first if statement. Similarly, in some other program an if-else may
occur in the if block as well. There is no limit on how deeply the
ifs and the elses can be nested.

Forms of if

The if statement can take any of the following forms:

(a) if (condition)
 do this ;

(b) if (condition)

{
 do this ;
 and this ;
}

(c) if (condition)

 do this ;
else
 do this ;

(d) if (condition)
{
 do this ;

Chapter 2: The Decision Control Structure 63

 and this ;
}
else
{
 do this ;
 and this ;
}

(e) if (condition)

 do this ;
else
{
 if (condition)
 do this ;
 else
 {
 do this ;
 and this ;
 }
}

(f) if (condition)

{
 if (condition)
 do this ;
 else
 {
 do this ;
 and this ;
 }
}
else
 do this ;

64 Let Us C

Use of Logical Operators
C allows usage of three logical operators, namely, &&, || and !.
These are to be read as ‘AND’ ‘OR’ and ‘NOT’ respectively.

There are several things to note about these logical operators. Most
obviously, two of them are composed of double symbols: || and
&&. Don’t use the single symbol | and &. These single symbols
also have a meaning. They are bitwise operators, which we would
examine in Chapter 14.

The first two operators, && and ||, allow two or more conditions
to be combined in an if statement. Let us see how they are used in
a program. Consider the following example.

Example 2.4: The marks obtained by a student in 5 different
subjects are input through the keyboard. The student gets a
division as per the following rules:

Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division
Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail

Write a program to calculate the division obtained by the student.

There are two ways in which we can write a program for this
example. These methods are given below.

/* Method – I */
main()
{
 int m1, m2, m3, m4, m5, per ;

 printf ("Enter marks in five subjects ") ;
 scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
 per = (m1 + m2 + m3 + m4 + m5) / 5 ;

Chapter 2: The Decision Control Structure 65

 if (per >= 60)
 printf ("First division ") ;
 else
 {
 if (per >= 50)
 printf ("Second division") ;
 else
 {
 if (per >= 40)
 printf ("Third division") ;
 else
 printf ("Fail") ;
 }
 }
}

This is a straight forward program. Observe that the program uses
nested if-elses. This leads to three disadvantages:

(a)

(b)

(c)

As the number of conditions go on increasing the level of
indentation also goes on increasing. As a result the whole
program creeps to the right.
Care needs to be exercised to match the corresponding ifs and
elses.
Care needs to be exercised to match the corresponding pair of
braces.

All these three problems can be eliminated by usage of ‘Logical
operators’. The following program illustrates this.

/* Method – II */
main()
{
 int m1, m2, m3, m4, m5, per ;

 printf ("Enter marks in five subjects ") ;
 scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
 per = (m1 + m2 + m3 + m4 + m5) / 5 ;

66 Let Us C

 if (per >= 60)
 printf ("First division") ;

 if ((per >= 50) && (per < 60))
 printf ("Second division") ;

 if ((per >= 40) && (per < 50))
 printf ("Third division") ;

 if (per < 40)
 printf ("Fail") ;
}

As can be seen from the second if statement, the && operator is
used to combine two conditions. ‘Second division’ gets printed if
both the conditions evaluate to true. If one of the conditions
evaluate to false then the whole thing is treated as false.

Two distinct advantages can be cited in favour of this program:

(a)

(b)

The matching (or do I say mismatching) of the ifs with their
corresponding elses gets avoided, since there are no elses in
this program.
In spite of using several conditions, the program doesn't creep
to the right. In the previous program the statements went on
creeping to the right. This effect becomes more pronounced as
the number of conditions go on increasing. This would make
the task of matching the ifs with their corresponding elses and
matching of opening and closing braces that much more
difficult.

The else if Clause

There is one more way in which we can write program for
Example 2.4. This involves usage of else if blocks as shown
below:

Chapter 2: The Decision Control Structure 67

/* else if ladder demo */
main()
{
 int m1, m2, m3, m4, m5, per ;

 per = (m1+ m2 + m3 + m4+ m5) / per ;

 if (per >= 60)
 printf ("First division") ;
 else if (per >= 50)
 printf ("Second division") ;
 else if (per >= 40)
 printf ("Third division") ;
 else
 printf ("fail") ;
}

You can note that this program reduces the indentation of the
statements. In this case every else is associated with its previous if.
The last else goes to work only if all the conditions fail. Even in
else if ladder the last else is optional.

Note that the else if clause is nothing different. It is just a way of
rearranging the else with the if that follows it. This would be
evident if you look at the following code:

if (i == 2) if (i == 2)
 printf ("With you…") ; printf ("With you…") ;
else else if (j == 2)
{ printf ("…All the time ") ;
 if (j == 2)
 printf ("…All the time") ;
}

Another place where logical operators are useful is when we want
to write programs for complicated logics that ultimately boil down

68 Let Us C

to only two answers. For example, consider the following
example:

Example 2.5: A company insures its drivers in the following
cases:

− If the driver is married.
− If the driver is unmarried, male & above 30 years of age.
− If the driver is unmarried, female & above 25 years of age.

In all other cases the driver is not insured. If the marital status, sex
and age of the driver are the inputs, write a program to determine
whether the driver is to be insured or not.

Here after checking a complicated set of instructions the final
output of the program would be one of the two—Either the driver
should be ensured or the driver should not be ensured. As
mentioned above, since these are the only two outcomes this
problem can be solved using logical operators. But before we do
that let us write a program that does not make use of logical
operators.

/* Insurance of driver - without using logical operators */
main()
{
 char sex, ms ;
 int age ;

 printf ("Enter age, sex, marital status ") ;
 scanf ("%d %c %c", &age, &sex, &ms) ;

 if (ms == 'M')
 printf ("Driver is insured") ;
 else
 {
 if (sex == 'M')
 {

Chapter 2: The Decision Control Structure 69

 if (age > 30)
 printf ("Driver is insured") ;
 else
 printf ("Driver is not insured") ;
 }
 else
 {
 if (age > 25)
 printf ("Driver is insured") ;
 else
 printf ("Driver is not insured") ;
 }
 }
}

From the program it is evident that we are required to match
several ifs and elses and several pairs of braces. In a more real-life
situation there would be more conditions to check leading to the
program creeping to the right. Let us now see how to avoid these
problems by using logical operators.

As mentioned above, in this example we expect the answer to be
either ‘Driver is insured’ or ‘Driver is not insured’. If we list down
all those cases in which the driver is insured, then they would be:

(a)
(b)
(c)

Driver is married.
Driver is an unmarried male above 30 years of age.
Driver is an unmarried female above 25 years of age.

Since all these cases lead to the driver being insured, they can be
combined together using && and || as shown in the program
below:

/* Insurance of driver - using logical operators */
main()
{
 char sex, ms ;

70 Let Us C

 int age ;

 printf ("Enter age, sex, marital status ") ;
 scanf ("%d %c %c" &age, &sex, &ms) ;

 if ((ms == 'M') || (ms == 'U' && sex == 'M' && age > 30) ||
 (ms == 'U' && sex == 'F' && age > 25))
 printf ("Driver is insured") ;
 else
 printf ("Driver is not insured") ;
}

In this program it is important to note that:

− The driver will be insured only if one of the conditions
enclosed in parentheses evaluates to true.

− For the second pair of parentheses to evaluate to true, each

condition in the parentheses separated by && must evaluate to
true.

− Even if one of the conditions in the second parentheses

evaluates to false, then the whole of the second parentheses
evaluates to false.

− The last two of the above arguments apply to third pair of

parentheses as well.

Thus we can conclude that the && and || are useful in the
following programming situations:

(a)

(b)

When it is to be tested whether a value falls within a
particular range or not.
When after testing several conditions the outcome is only one
of the two answers (This problem is often called yes/no
problem).

Chapter 2: The Decision Control Structure 71

There can be one more situation other than checking ranges or
yes/no problem where you might find logical operators useful. The
following program demonstrates it.

Example 2.6: Write a program to calculate the salary as per the
following table:

 Gender Years of Service Qualifications Salary

 Male >= 10 Post-Graduate 15000
 >= 10 Graduate 10000
 < 10 Post-Graduate 10000
 < 10 Graduate 7000
 Female >= 10 Post-Graduate 12000
 >= 10 Graduate 9000
 < 10 Post-Graduate 10000
 < 10 Graduate 6000

Figure 2.6

main()
{
 char g ;
 int yos, qual, sal ;

 printf ("Enter Gender, Years of Service and
 Qualifications (0 = G, 1 = PG):") ;
 scanf ("%c%d%d", &g, &yos, &qual) ;

 if (g == 'm' && yos >= 10 && qual == 1)
 sal = 15000 ;
 else if ((g == 'm' && yos >= 10 && qual == 0) ||
 (g == 'm' && yos < 10 && qual == 1))
 sal = 10000 ;

72 Let Us C

 else if (g == 'm' && yos < 10 && qual == 0)
 sal = 7000 ;
 else if (g == 'f' && yos >= 10 && qual == 1)
 sal = 12000 ;
 else if (g == 'f' && yos >= 10 && qual == 0)
 sal = 9000 ;
 else if (g == 'f' && yos < 10 && qual == 1)
 sal = 10000 ;
 else if (g == 'f' && yos < 10 && qual == 0)
 sal = 6000 ;

 printf ("\nSalary of Employee = %d", sal) ;
}

The ! Operator

So far we have used only the logical operators && and ||. The
third logical operator is the NOT operator, written as !. This
operator reverses the result of the expression it operates on. For
example, if the expression evaluates to a non-zero value, then
applying ! operator to it results into a 0. Vice versa, if the
expression evaluates to zero then on applying ! operator to it
makes it 1, a non-zero value. The final result (after applying !) 0 or
1 is considered to be false or true respectively. Here is an example
of the NOT operator applied to a relational expression.

! (y < 10)

This means “not y less than 10”. In other words, if y is less than
10, the expression will be false, since (y < 10) is true. We can
express the same condition as (y >= 10).

The NOT operator is often used to reverse the logical value of a
single variable, as in the expression

if (! flag)

Chapter 2: The Decision Control Structure 73

This is another way of saying

if (flag == 0)

Does the NOT operator sound confusing? Avoid it if you want, as
the same thing can be achieved without using the NOT operator.

Hierarchy of Operators Revisited

Since we have now added the logical operators to the list of
operators we know, it is time to review these operators and their
priorities. Figure 2.7 summarizes the operators we have seen so
far. The higher the position of an operator is in the table, higher is
its priority. (A full-fledged precedence table of operators is given
in Appendix A.)

 Operators Type

 ! Logical NOT
 * / % Arithmetic and modulus
 + - Arithmetic
 < > <= >= Relational
 == != Relational
 && Logical AND
 || Logical OR
 = Assignment

Figure 2.7

A Word of Caution
What will be the output of the following program:

74 Let Us C

main()
{
 int i ;

 printf ("Enter value of i ") ;
 scanf ("%d", &i) ;
 if (i = 5)
 printf ("You entered 5") ;
 else
 printf ("You entered something other than 5") ;
}

And here is the output of two runs of this program...

Enter value of i 200
You entered 5
Enter value of i 9999
You entered 5

Surprising? You have entered 200 and 9999, and still you find in
either case the output is ‘You entered 5’. This is because we have
written the condition wrongly. We have used the assignment
operator = instead of the relational operator ==. As a result, the
condition gets reduced to if (5), irrespective of what you supply
as the value of i. And remember that in C ‘truth’ is always non-
zero, whereas ‘falsity’ is always zero. Therefore, if (5) always
evaluates to true and hence the result.

Another common mistake while using the if statement is to write a
semicolon (;) after the condition, as shown below:

main()
{
 int i ;

 printf ("Enter value of i ") ;
 scanf ("%d", &i) ;

Chapter 2: The Decision Control Structure 75

 if (i == 5) ;
 printf ("You entered 5") ;
}

The ; makes the compiler to interpret the statement as if you have
written it in following manner:

if (i == 5)
 ;
printf ("You entered 5") ;

Here, if the condition evaluates to true the ; (null statement, which
does nothing on execution) gets executed, following which the
printf() gets executed. If the condition fails then straightaway the
printf() gets executed. Thus, irrespective of whether the condition
evaluates to true or false the printf() is bound to get executed.
Remember that the compiler would not point out this as an error,
since as far as the syntax is concerned nothing has gone wrong, but
the logic has certainly gone awry. Moral is, beware of such
pitfalls.

The following figure summarizes the working of all the three
logical operators.

 Operands Results

 x y !x !y x && y x || y
 0 0 1 1 0 0
 0 non-zero 1 0 0 0
 non-zero 0 0 1 0 1
 non-zero non-zero 0 0 1 1

Figure 2.8

76 Let Us C

The Conditional Operators
The conditional operators ? and : are sometimes called ternary
operators since they take three arguments. In fact, they form a kind
of foreshortened if-then-else. Their general form is,

expression 1 ? expression 2 : expression 3
What this expression says is: “if expression 1 is true (that is, if its
value is non-zero), then the value returned will be expression 2,
otherwise the value returned will be expression 3”. Let us
understand this with the help of a few examples:

(a) int x, y ;
scanf ("%d", &x) ;
y = (x > 5 ? 3 : 4) ;

This statement will store 3 in y if x is greater than 5,
otherwise it will store 4 in y.

The equivalent if statement will be,

if (x > 5)
 y = 3 ;
else
 y = 4 ;

(b) char a ;
int y ;
scanf ("%c", &a) ;
y = (a >= 65 && a <= 90 ? 1 : 0) ;

Here 1 would be assigned to y if a >=65 && a <=90 evaluates to
true, otherwise 0 would be assigned.

The following points may be noted about the conditional
operators:

Chapter 2: The Decision Control Structure 77

(a)

(b)

(c)

(a)

It’s not necessary that the conditional operators should be
used only in arithmetic statements. This is illustrated in the
following examples:

Ex.: int i ;
 scanf ("%d", &i) ;
 (i == 1 ? printf ("Amit") : printf ("All and sundry")) ;

Ex.: char a = 'z' ;
 printf ("%c" , (a >= 'a' ? a : '!')) ;

The conditional operators can be nested as shown below.

int big, a, b, c ;
big = (a > b ? (a > c ? 3: 4) : (b > c ? 6: 8)) ;

Check out the following conditional expression:

a > b ? g = a : g = b ;

This will give you an error ‘Lvalue Required’. The error can
be overcome by enclosing the statement in the : part within a
pair of parenthesis. This is shown below:

a > b ? g = a : (g = b) ;

In absence of parentheses the compiler believes that b is being
assigned to the result of the expression to the left of second =.
Hence it reports an error.

The limitation of the conditional operators is that after the ? or
after the : only one C statement can occur. In practice rarely is this
the requirement. Therefore, in serious C programming conditional
operators aren’t as frequently used as the if-else.

Summary
There are three ways for taking decisions in a program. First
way is to use the if-else statement, second way is to use the

78 Let Us C

conditional operators and third way is to use the switch
statement.

(b)

(c)

(d)

(e)
(f)

(g)

The default scope of the if statement is only the next
statement. So, to execute more than one statement they must
be written in a pair of braces.
An if block need not always be associated with an else block.
However, an else block is always associated with an if
statement.
If the outcome of an if-else ladder is only one of two answers
then the ladder should be replaced either with an else-if clause
or by logical operators.
&& and || are binary operators, whereas, ! is a unary operator.
In C every test expression is evaluated in terms of zero and
non-zero values. A zero value is considered to be false and a
non-zero value is considered to be true.
Assignment statements used with conditional operators must
be enclosed within a pair of parenthesis.

Exercise

if, if-else, Nested if-elses

[A] What would be the output of the following programs:

(a) main()

{
 int a = 300, b, c ;
 if (a >= 400)
 b = 300 ;
 c = 200 ;
 printf ("\n%d %d", b, c) ;
}

(b) main()

{
 int a = 500, b, c ;
 if (a >= 400)

Chapter 2: The Decision Control Structure 79

 b = 300 ;
 c = 200 ;
 printf ("\n%d %d", b, c) ;
}

(c) main()

{
 int x = 10, y = 20 ;
 if (x == y) ;
 printf ("\n%d %d", x, y) ;
}

(d) main()

{
 int x = 3, y = 5 ;
 if (x == 3)
 printf ("\n%d", x) ;
 else ;
 printf ("\n%d", y) ;
}

(e) main()

{
 int x = 3 ;
 float y = 3.0 ;

 if (x == y)
 printf ("\nx and y are equal") ;
 else
 printf ("\nx and y are not equal") ;
}

(f) main()
{
 int x = 3, y, z ;
 y = x = 10 ;
 z = x < 10 ;
 printf ("\nx = %d y = %d z = %d", x, y, z) ;
}

80 Let Us C

(g) main()

{
 int k = 35 ;
 printf ("\n%d %d %d", k == 35, k = 50, k > 40) ;
}

(h) main()
{
 int i = 65 ;
 char j = ‘A’ ;
 if (i == j)
 printf (“C is WOW”) ;
 else
 printf("C is a headache") ;
}

(i) main()
{
 int a = 5, b, c ;
 b = a = 15 ;
 c = a < 15 ;
 printf ("\na = %d b = %d c = %d", a, b, c) ;
}

(j) main()
{
 int x = 15 ;
 printf ("\n%d %d %d", x != 15, x = 20, x < 30) ;
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{
 float a = 12.25, b = 12.52 ;
 if (a = b)
 printf ("\na and b are equal") ;

Chapter 2: The Decision Control Structure 81

}

(b) main()
{
 int j = 10, k = 12 ;
 if (k >= j)
 {
 {
 k = j ;
 j = k ;
 }
 }
}

(c) main()
{
 if ('X' < 'x')
 printf ("\nascii value of X is smaller than that of x") ;
}

(d) main()
{
 int x = 10 ;
 if (x >= 2) then
 printf ("\n%d", x) ;
}

(e) main()
{
 int x = 10 ;
 if x >= 2
 printf ("\n%d", x) ;
}

(f) main()
{
 int x = 10, y = 15 ;
 if (x % 2 = y % 3)

82 Let Us C

 printf ("\nCarpathians") ;
}

(g) main()
{
 int x = 30 , y = 40 ;
 if (x == y)
 printf("x is equal to y") ;
 elseif (x > y)
 printf("x is greater than y") ;
 elseif (x < y)
 printf("x is less than y") ;
}

(h) main()
{
 int x = 10 ;
 if (x >= 2) then
 printf ("\n%d", x) ;
}

(i) main()
{
 int a, b ;
 scanf ("%d %d",a, b) ;
 if (a > b) ;
 printf ("This is a game") ;
 else
 printf ("You have to play it") ;
}

[C] Attempt the following:

(a) If cost price and selling price of an item is input through the

keyboard, write a program to determine whether the seller has
made profit or incurred loss. Also determine how much profit
he made or loss he incurred.

Chapter 2: The Decision Control Structure 83

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Any integer is input through the keyboard. Write a program to
find out whether it is an odd number or even number.

Any year is input through the keyboard. Write a program to
determine whether the year is a leap year or not.

(Hint: Use the % (modulus) operator)

According to the Gregorian calendar, it was Monday on the
date 01/01/1900. If any year is input through the keyboard
write a program to find out what is the day on 1st January of
this year.

A five-digit number is entered through the keyboard. Write a
program to obtain the reversed number and to determine
whether the original and reversed numbers are equal or not.

If the ages of Ram, Shyam and Ajay are input through the
keyboard, write a program to determine the youngest of the
three.

Write a program to check whether a triangle is valid or not,
when the three angles of the triangle are entered through the
keyboard. A triangle is valid if the sum of all the three angles
is equal to 180 degrees.

Find the absolute value of a number entered through the
keyboard.

Given the length and breadth of a rectangle, write a program to
find whether the area of the rectangle is greater than its
perimeter. For example, the area of the rectangle with length = 5
and breadth = 4 is greater than its perimeter.

Given three points (x1, y1), (x2, y2) and (x3, y3), write a
program to check if all the three points fall on one straight line.

84 Let Us C

(k)

(l)

Given the coordinates (x, y) of a center of a circle and it’s radius,
write a program which will determine whether a point lies inside
the circle, on the circle or outside the circle.

(Hint: Use sqrt() and pow() functions)

Given a point (x, y), write a program to find out if it lies on the
x-axis, y-axis or at the origin, viz. (0, 0).

Logical Operators

 If a = 10, b = 12, c = 0, find the values of the expressions in
the following table:

Expression Value

a != 6 && b > 5
a == 9 || b < 3
! (a < 10)
! (a > 5 && c)
5 && c != 8 || !c

1

[D] What would be the output of the following programs:

(a) main()

{
 int i = 4, z = 12 ;
 if (i = 5 || z > 50)
 printf ("\nDean of students affairs") ;
 else
 printf ("\nDosa") ;
}

(b) main()
{
 int i = 4, z = 12 ;

Chapter 2: The Decision Control Structure 85

 if (i = 5 && z > 5)
 printf ("\nLet us C") ;
 else
 printf ("\nWish C was free !") ;
}

(c) main()
{
 int i = 4, j = -1, k = 0, w, x, y, z ;
 w = i || j || k ;
 x = i && j && k ;
 y = i || j && k ;
 z = i && j || k ;
 printf ("\nw = %d x = %d y = %d z = %d", w, x, y, z) ;
}

(d) main()
{
 int i = 4, j = -1, k = 0, y, z ;
 y = i + 5 && j + 1 || k + 2 ;
 z = i + 5 || j + 1 && k + 2 ;
 printf ("\ny = %d z = %d", y, z) ;
}

(e) main()
{
 int i = -3, j = 3 ;
 if (!i + !j * 1)
 printf ("\nMassaro") ;
 else
 printf ("\nBennarivo") ;
}

(f) main()
{
 int a = 40 ;
 if (a > 40 && a < 45)
 printf ("a is greater than 40 and less than 45") ;

86 Let Us C

 else
 printf ("%d", a) ;
}

(g) main()
{
 int p = 8, q = 20 ;
 if (p == 5 && q > 5)
 printf ("\nWhy not C") ;
 else
 printf ("\nDefinitely C !") ;
}

(h) main()
{
 int i = -1, j = 1, k ,l ;
 k = i && j ;
 l = i || j ;
 printf ("%d %d", I, j) ;
}

(i) main()
{
 int x = 20 , y = 40 , z = 45 ;
 if (x > y && x > z)
 printf("x is big") ;
 else if (y > x && y > z)
 printf("y is big") ;
 else if (z > x && z > y)
 printf("z is big") ;
}

(j) main()
{
 int i = -1, j = 1, k ,l ;
 k = !i && j ;
 l = !i || j ;
 printf ("%d %d", i, j) ;

Chapter 2: The Decision Control Structure 87

}

(k) main()
{
 int j = 4, k ;
 k = !5 && j ;
 printf ("\nk = %d", k) ;
}

[E] Point out the errors, if any, in the following programs:

(a) /* This program

/* is an example of
/* using Logical operators */
main()
{
 int i = 2, j = 5 ;
 if (i == 2 && j == 5)
 printf ("\nSatisfied at last") ;
}

(b) main()
{
 int code, flag ;
 if (code == 1 & flag == 0)
 printf ("\nThe eagle has landed") ;
}

(c) main()
{
 char spy = 'a', password = 'z' ;
 if (spy == 'a' or password == 'z')
 printf ("\nAll the birds are safe in the nest") ;
}

(d) main()
{

88 Let Us C

 int i = 10, j = 20 ;
 if (i = 5) && if (j = 10)
 printf ("\nHave a nice day") ;
}

(a) main()
{
 int x = 10 , y = 20;
 if (x >= 2 and y <=50)
 printf ("\n%d", x) ;
}

(b) main()
{
 int a, b ;
 if (a == 1 & b == 0)
 printf ("\nGod is Great") ;
}

(c) main()
{
 int x = 2;
 if (x == 2 && x != 0) ;
 {
 printf ("\nHi") ;
 printf("\nHello") ;
 }
 else
 printf("Bye") ;
}

(d) main()
{
 int i = 10, j = 10 ;
 if (i && j == 10)
 printf ("\nHave a nice day") ;

 }

Chapter 2: The Decision Control Structure 89

[F] Attempt the following:

(a)

(b)

Any year is entered through the keyboard, write a program to
determine whether the year is leap or not. Use the logical
operators && and ||.

Any character is entered through the keyboard, write a
program to determine whether the character entered is a
capital letter, a small case letter, a digit or a special symbol.

The following table shows the range of ASCII values for
various characters.

Characters ASCII Values

A – Z
a – z
0 – 9
special symbols

65 – 90
97 – 122
48 – 57
 0 - 47, 58 - 64, 91 - 96, 123 - 127

(c) An Insurance company follows following rules to calculate

premium.

(1) If a person’s health is excellent and the person is between
25 and 35 years of age and lives in a city and is a male
then the premium is Rs. 4 per thousand and his policy
amount cannot exceed Rs. 2 lakhs.

(2) If a person satisfies all the above conditions except that
the sex is female then the premium is Rs. 3 per thousand
and her policy amount cannot exceed Rs. 1 lakh.

(3) If a person’s health is poor and the person is between 25
and 35 years of age and lives in a village and is a male

90 Let Us C

then the premium is Rs. 6 per thousand and his policy
cannot exceed Rs. 10,000.

(4) In all other cases the person is not insured.

Write a program to output whether the person should be
insured or not, his/her premium rate and maximum amount
for which he/she can be insured.

(d)

(e)

A certain grade of steel is graded according to the following
conditions:

(i) Hardness must be greater than 50
(ii) Carbon content must be less than 0.7
(iii) Tensile strength must be greater than 5600

The grades are as follows:

Grade is 10 if all three conditions are met
Grade is 9 if conditions (i) and (ii) are met
Grade is 8 if conditions (ii) and (iii) are met
Grade is 7 if conditions (i) and (iii) are met
Grade is 6 if only one condition is met
Grade is 5 if none of the conditions are met

Write a program, which will require the user to give values of
hardness, carbon content and tensile strength of the steel
under consideration and output the grade of the steel.

A library charges a fine for every book returned late. For first
5 days the fine is 50 paise, for 6-10 days fine is one rupee and
above 10 days fine is 5 rupees. If you return the book after 30
days your membership will be cancelled. Write a program to
accept the number of days the member is late to return the
book and display the fine or the appropriate message.

Chapter 2: The Decision Control Structure 91

(f)

(g)

(h)

(i)

If the three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is
valid or not. The triangle is valid if the sum of two sides is
greater than the largest of the three sides.

If the three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is
isosceles, equilateral, scalene or right angled triangle.

In a company, worker efficiency is determined on the basis of
the time required for a worker to complete a particular job. If
the time taken by the worker is between 2 – 3 hours, then the
worker is said to be highly efficient. If the time required by
the worker is between 3 – 4 hours, then the worker is ordered
to improve speed. If the time taken is between 4 – 5 hours, the
worker is given training to improve his speed, and if the time
taken by the worker is more than 5 hours, then the worker has
to leave the company. If the time taken by the worker is input
through the keyboard, find the efficiency of the worker.

A university has the following rules for a student to qualify
for a degree with A as the main subject and B as the
subsidiary subject:
(a) He should get 55 percent or more in A and 45 percent or

more in B.
(b) If he gets than 55 percent in A he should get 55 percent or

more in B. However, he should get at least 45 percent in
A.

(c) If he gets less than 45 percent in B and 65 percent or more
in A he is allowed to reappear in an examination in B to
qualify.

(d) In all other cases he is declared to have failed.

Write a program to receive marks in A and B and Output
whether the student has passed, failed or is allowed to
reappear in B.

92 Let Us C

(j) The policy followed by a company to process customer orders

is given by the following rules:

(a) If a customer order is less than or equal to that in stock
and has credit is OK, supply has requirement.

(b) If has credit is not OK do not supply. Send him
intimation.

(c) If has credit is Ok but the item in stock is less than has
order, supply what is in stock. Intimate to him data the
balance will be shipped.

Write a C program to implement the company policy.

Conditional operators

[G] What would be the output of the following programs:

(a) main()

{
 int i = -4, j, num ;
 j = (num < 0 ? 0 : num * num) ;
 printf ("\n%d", j) ;
}

(b) main()
{
 int k, num = 30 ;
 k = (num > 5 ? (num <= 10 ? 100 : 200) : 500) ;
 printf ("\n%d", num) ;
}

(c) main()

{
 int j = 4 ;
 (!j != 1 ? printf ("\nWelcome") : printf ("\nGood Bye")) ;

Chapter 2: The Decision Control Structure 93

}

[H] Point out the errors, if any, in the following programs:

(a) main()

{
 int tag = 0, code = 1 ;
 if (tag == 0)
 (code > 1 ? printf ("\nHello") ? printf ("\nHi")) ;
 else
 printf ("\nHello Hi !!") ;
}

(b) main()
{
 int ji = 65 ;
 printf ("\nji >= 65 ? %d : %c", ji) ;
}

(c) main()
{
 int i = 10, j ;
 i >= 5 ? (j = 10) : (j = 15) ;
 printf ("\n%d %d", i, j) ;
}

(d) main()
{
 int a = 5 , b = 6 ;
 (a == b ? printf("%d",a)) ;
}

(e) main()
{
 int n = 9 ;
 (n == 9 ? printf("You are correct") ; : printf("You are wrong") ;) ;
}

94 Let Us C

(f) main()
{
 int kk = 65 ,ll ;
 ll = (kk == 65 : printf ("\n kk is equal to 65") : printf ("\n kk is not
equal to 65")) ;
 printf("%d", ll) ;
}

(g) main()
{
 int x = 10, y = 20 ;
 x == 20 && y != 10 ? printf("True") : printf("False") ;
}

[I] Rewrite the following programs using conditional operators.

(a) main()

{
 int x, min, max ;
 scanf ("\n%d %d", &max, &x) ;
 if (x > max)
 max = x ;
 else
 min = x ;
}

(b) main()
{
 int code ;
 scanf ("%d", &code) ;
 if (code > 1)
 printf ("\nJerusalem") ;
 else
 if (code < 1)
 printf ("\nEddie") ;
 else
 printf ("\nC Brain") ;
}

Chapter 2: The Decision Control Structure 95

(c) main()

{
 float sal ;
 printf ("Enter the salary") ;
 scanf ("%f", &sal) ;
 if (sal < 40000 && sal > 25000)
 printf ("Manager") ;
 else
 if (sal < 25000 && sal > 15000)
 printf ("Accountant") ;
 else
 printf ("Clerk") ;
}

[J] Attempt the following:

(a)

(b)

(c)

Using conditional operators determine:

(1) Whether the character entered through the keyboard is a
lower case alphabet or not.

(2) Whether a character entered through the keyboard is a
special symbol or not.

Write a program using conditional operators to determine
whether a year entered through the keyboard is a leap year or
not.

Write a program to find the greatest of the three numbers
entered through the keyboard using conditional operators.

96 Let Us C

Nesting of Loops
iple Initialisations in the for Loop

• Th nt
Th ent

oop
• Su
• Ex

he programs that we have developed so far used either a
sequential or a decision control instruction. In the first one,
the calculations were carried out in a fixed order, while in

the second, an appropriate set of instructions were executed
depending upon the outcome of the condition being tested (or a
logical decision being taken).

T

• Loops
• The while Loop

Tips and Traps
More Operators

• The for Loop

Mult
• The Odd Loop

e break Stateme
e continue Statem

• The do-while L
mmary
ercise

97

98 Let Us C

These programs were of limited nature, because when executed,
they always performed the same series of actions, in the same way,
exactly once. Almost always, if something is worth doing, it’s
worth doing more than once. You can probably think of several
examples of this from real life, such as eating a good dinner or
going for a movie. Programming is the same; we frequently need
to perform an action over and over, often with variations in the

Lo

peration is done
h a loop control instruction.

There are three methods by way of which we can repeat a part of a

The w
ething

a fixed number of times. Perhaps you want to calculate gross
salaries of ten different persons, or you want to convert
temperatures from centigrade to fahrenheit for 15 different cities.

details each time. The mechanism, which meets this need, is the
‘loop’, and loops are the subject of this chapter.

ops
The versatility of the computer lies in its ability to perform a set of
instructions repeatedly. This involves repeating some portion of
the program either a specified number of times or until a particular
condition is being satisfied. This repetitive o
throug

program. They are:

(a) Using a for statement
(b) Using a while statement
(c) Using a do-while statement

Each of these methods is discussed in the following pages.

hile Loop
It is often the case in programming that you want to do som

Chapter 3: The Loop Control Structure 99

The while loop is i
simple example, w

deally suited for such cases. Let us look at a
hich uses a while loop. The flowchart shown

 count = 1 ;

below would help you to understand the operation of the while
loop.

is
count <=

Figure 3.1
/* Calculation of simple interest for 3 sets of p, n and r */
main()
{
 int p, n, count ;
 float r, si ;

3
No

Yes

START

count = 1

STOP

si = p * n * r 00 / 1

INPUT
p, n, r

PRINT
si

count = count + 1

100 Let Us C

 while (count <= 3)
 {
 printf ("\nEnter values of p, n and r ") ;

d %f", &p, &n, &r) ;
n * r / 100 ;

 printf ("Simple interest = Rs. %f", si) ;

1 ;

le runs...

f p, n and r 1000 5 13.5
im e i 00

es of p, n and r 2000 5 13.5
mple interest = Rs. 1350.000000
nter values of p, n and r 3500 5 3.5

ts after the while 3 times. The
le interest is written within a pair of

 keyword. These statements
 while loop. The parentheses

ion. So long as this condition
thin the body of the while loop keep

 scanf ("%d %
 si = p *

 count = count +
 }
}

And here are a few samp

Enter values o
S pl nterest = Rs. 675.0000
Enter valu
Si
E
Simple interest = Rs. 612.500000

The program executes all statemen
logic for calculating the simp
braces immediately after the while
form what is called the ‘body’ of the
after the while contain a condit
remains true all statements wi
getting executed repeatedly. To begin with the variable count is
initialized to 1 and every time the simple interest logic is executed
the value of count is incremented by one. The variable count is
many a times called either a ‘loop counter’ or an ‘index variable’.

The operation of the while loop is illustrated in the following
figure.

Chapter 3: The Loop Control Structure 101

test False

START

i

body of loop

True

increment

STOP

nitialise

Figure 3.2

Tips and Traps

The general form of while is as shown below:

initialise loop counter ;

increment loop counter ;

o about while...

 The statements within the while loop would keep on getting
d remains true. When the

while (test loop counter using a condition)
{
 do this ;
 and this ;

}

N te the following points

−
executed till the condition being teste

102 Let Us C

condition becomes false, the control passes to the first
statement that follows the body of the while loop.

In place of the condition there can be any other valid
expression. So long as the expression evaluates to a non-zero
value the statements within the loop would get executed.

The condition being tested may use relational or logical
operators as shown in the following examples:

−

 (b < 15 || c < 20))

− T ay be a single line or a block

o parentheses are optional. For

 ;

)

− As a rule the while must test a condition that will eventually
become false, otherwise the loop would be executed forever,

i <= 10)
%d\n", i) ;

while (i <= 10)
while (i >= 10 && j <= 15)
while (j > 10 &&

he statements within the loop m
f statements. In the first case the

example,

while (i <= 10)
 i = i + 1

is same as

while (i <= 10
{
 i = i + 1 ;
}

indefinitely.

main()
{
 int i = 1 ;
 while (
 printf ("
}

Chapter 3: The Loop Control Structure 103

p, since i remains equal to 1 forever.
e correct form would be as under:

 int i = 1 ;
i <= 10)

{
 "%d\n", i) ;

− enting a loop counter, we can even decrement
manage to get the body of the loop executed

repeatedly. This is shown below:

i >= 1)
{

 "\nMake the computer literate!") ;

− that a loop counter must only be an int. It
a float.

a <= 10.5)
{

indrops on roses...") ;
skers on kittens") ;

This is an indefinite loo
Th

main()
{

 while (

 printf (
 i = i + 1 ;
 }
}

Instead of increm
it and still

main()
{
 int i = 5 ;
 while (

 printf (
 i = i - 1 ;
 }
}

It is not necessary
can even be

main()
{
 float a = 10.0 ;
 while (

 printf ("\nRa
 printf ("...and whi
 a = a + 0.1 ;

104 Let Us C

 }
}

− Even floating point loop counters can be decremented. Once
again the increment and decrement could be by any value, not
necessarily 1.

 int i = 1 ;
i <= 32767)

{
 "%d\n", i) ;

doesn’t print numbers from 1 to 32767. It’s an
definite loop. To begin with, it prints out numbers from 1 to

32767. After that value of i is incremented by 1, therefore it

− W

i <= 10) ;
{

 "%d\n", i) ;

What do you think would be the output of the following
program?

main()
{

 while (

 printf (
 i = i + 1 ;
 }
}

No, it
in

tries to become 32768, which falls outside the valid integer
range, so it goes to other side and becomes -32768 which
would certainly satisfy the condition in the while. This
process goes on indefinitely.

hat will be the output of the following program?

main()
{
 int i = 1 ;
 while (

 printf (
 i = i + 1 ;
 }
}

Chapter 3: The Loop Control Structure 105

another indefinite loop, and it doesn’t give any output
 all. The reason is, we have carelessly given a ; after the

while. This would make the loop work like this...

{
", i) ;

 1 ;

in alue of i is not getting incremented the control
ould keep rotating within the loop, eternally. Note that

enclosing printf() and i = i +1 within a pair of braces is not

Mo

h are frequently used with
ir usage let us consider a problem wherein

numbers from 1 to 10 are to be printed on the screen. The program

 int i = 1 ;
i <= 10)

{
 "%d\n", i) ;

This is
at

while (i <= 10)
 ;

 printf ("%d\n
 i = i +
}

S ce the v
w

an error. In fact we can put a pair of braces around any
individual statement or set of statements without affecting the
execution of the program.

re Operators

There are variety of operators whic
while. To illustrate the

for performing this task can be written using while in the
following different ways:

(a) main()
{

 while (

 printf (
 i = i + 1 ;
 }
}

106 Let Us C

(b)

int i = 1 ;
i <= 10)

{
 "%d\n", i) ;

at the increment operator ++ increments the value of i
 1, every time the statement i++ gets executed. Similarly, to

reduce the value of a variable by 1 a decrement operator -- is

+++.

(c)

 int i = 1 ;
i <= 10)

{
 "%d\n", i) ;

hat += is a compound assignment operator. It
crements the value of i by 1. Similarly, j = j + 10 can also

be written as j += 10. Other compound assignment operators

(d)

 int i = 0 ;
 (i++ < 10)

main()
{

 while (

 printf (
 i++ ;
 }
}

Note th
by

also available.

However, never use n+++ to increment the value of n by 2,
since C doesn’t recognize the operator

main()
{

 while (

 printf (
 i += 1 ;
 }
}

Note t
in

are -=, *=, / = and %=.

main()
{

 while

Chapter 3: The Loop Control Structure 107

 printf ("%d\n", i) ;

 i++ < 10), firstly the comparison of
lue of i with 10 is performed, and then the incrementation

of i takes place. Since the incrementation of i happens after its

(e)

 int i = 0 ;
 (++i <= 10)

 printf ("%d\n", i) ;

 e ++i <= 10), firstly incrementation of
takes place, then the comparison of value of i with 10 is

performed. Since the incrementation of i happens before its

The fo
son why few programmers use while is that they
ing the for, which is probably the most popular

looping instruction. The for allows us to specify three things about

ounter to determine whether its value has
reached the number of repetitions desired.

(c) h time the program

}

In the statement while (
va

usage, here the ++ operator is called a post-incrementation
operator. When the control reaches printf(), i has already
been incremented, hence i must be initialized to 0.

main()
{

 while

}

In th statement while (
i

usage, here the ++ operator is called a pre-incrementation
operator.

r Loop
Perhaps one rea
are too busy us

a loop in a single line:

(a) Setting a loop counter to an initial value.
(b) Testing the loop c

Increasing the value of loop counter eac
segment within the loop has been executed.

108 Let Us C

The

r (initialise counter ; test counter ; increment counter)

do this ;

and this ;

down the simple interest program using for. Compare
is program with the one, which we wrote using while. The

lowchart is also given below for a better understanding.

general form of for statement is as under:

fo
{

 and this ;

}

Let us write
th
f

Chapter 3: The Loop Control Structure 109

INPU
bs

T

Yes

No

STOP

count = 1

si = p * n * r / 100

count = count + 1

is
count <= 3

INPUT
p, n, r

PRINT
si

START

Figure 3.3

/* Calculation of simple interest for 3 sets of p, n and r */
main ()
{
 int p, n, count ;
 float r, si ;

 for (count = 1 ; count <= 3 ; count = count + 1)
 {
 printf ("Enter values of p, n, and r ") ;
 scanf ("%d %d %f", &p, &n, &r) ;

 si = p * n * r / 100 ;
 printf ("Simple Interest = Rs.%f\n", si) ;
 }
}

110 Let Us C

If this program is compared with the one written using while, it
can be seen that the three steps—initialization, testing and
incrementation—required for the loop construct have now been
incorporated in the for statement.

Let us now examine how the for statement gets executed:

− When the for statement is executed for the first time, the value

of count is set to an initial value 1.

− Now the condition count <= 3 is tested. Since count is 1 the

condition is satisfied and the body of the loop is executed for
the first time.

− Upon reaching the closing brace of for, control is sent back to

the for statement, where the value of count gets incremented
by 1.

− Again the test is performed to check whether the new value of

count exceeds 3.

− If the value of count is still within the range 1 to 3, the

statements within the braces of for are executed again.

− The body of the for loop continues to get executed till count

doesn’t exceed the final value 3.

− When count reaches the value 4 the control exits from the loop

and is transferred to the statement (if any) immediately after
the body of for.

The following figure would help in further clarifying the concept
of execution of the for loop.

Chapter 3: The Loop Control Structure 111

test False

True

increment

body of loop STOP

initialise

START

Figure 3.4

It is important to note that the initialization, testing and
incrementation part of a for loop can be replaced by any valid
expression. Thus the following for loops are perfectly ok.

for (i = 10 ; i ; i --)
 printf ("%d", i) ;
for (i < 4 ; j = 5 ; j = 0)
 printf ("%d", i) ;
for (i = 1; i <=10 ; printf ("%d",i++)
 ;
for (scanf ("%d", &i) ; i <= 10 ; i++)
 printf ("%d", i) ;

Let us now write down the program to print numbers from 1 to 10
in different ways. This time we would use a for loop instead of a
while loop.

112 Let Us C

(a) main()
{
 int i ;
 for (i = 1 ; i <= 10 ; i = i + 1)
 printf ("%d\n", i) ;
}

Note that the initialisation, testing and incrementation of loop
counter is done in the for statement itself. Instead of i = i + 1,
the statements i++ or i += 1 can also be used.

Since there is only one statement in the body of the for loop,
the pair of braces have been dropped. As with the while, the
default scope of for is the immediately next statement after
for.

(b) main()
{
 int i ;
 for (i = 1 ; i <= 10 ;)
 {
 printf ("%d\n", i) ;
 i = i + 1 ;
 }
}

Here, the incrementation is done within the body of the for
loop and not in the for statement. Note that inspite of this the
semicolon after the condition is necessary.

(c) main()
{
 int i = 1 ;
 for (; i <= 10 ; i = i + 1)
 printf ("%d\n", i) ;
}

Chapter 3: The Loop Control Structure 113

Here the initialisation is done in the declaration statement
itself, but still the semicolon before the condition is necessary.

(d) main()
{
 int i = 1 ;
 for (; i <= 10 ;)
 {
 printf ("%d\n", i) ;
 i = i + 1 ;
 }
}
Here, neither the initialisation, nor the incrementation is done
in the for statement, but still the two semicolons are
necessary.

(e) main()
{
 int i ;
 for (i = 0 ; i++ < 10 ;)
 printf ("%d\n", i) ;
}

Here, the comparison as well as the incrementation is done
through the same statement, i++ < 10. Since the ++ operator
comes after i firstly comparison is done, followed by
incrementation. Note that it is necessary to initialize i to 0.

(f) main()
{
 int i ;
 for (i = 0 ; ++i <= 10 ;)
 printf ("%d\n", i) ;
}

114 Let Us C

Here, both, the comparison and the incrementation is done
through the same statement, ++i <= 10. Since ++ precedes i
firstly incrementation is done, followed by comparison. Note
that it is necessary to initialize i to 0.

Nesting of Loops

The way if statements can be nested, similarly whiles and fors can
also be nested. To understand how nested loops work, look at the
program given below:

/* Demonstration of nested loops */
main()
{
 int r, c, sum ;
 for (r = 1 ; r <= 3 ; r++) /* outer loop */
 {
 for (c = 1 ; c <= 2 ; c++) /* inner loop */
 {
 sum = r + c ;
 printf ("r = %d c = %d sum = %d\n", r, c, sum) ;
 }
 }
}

When you run this program you will get the following output:

r = 1 c = 1 sum = 2
r = 1 c = 2 sum = 3
r = 2 c = 1 sum = 3
r = 2 c = 2 sum = 4
r = 3 c = 1 sum = 4
r = 3 c = 2 sum = 5

Here, for each value of r the inner loop is cycled through twice,
with the variable c taking values from 1 to 2. The inner loop

Chapter 3: The Loop Control Structure 115

terminates when the value of c exceeds 2, and the outer loop
terminates when the value of r exceeds 3.

As you can see, the body of the outer for loop is indented, and the
body of the inner for loop is further indented. These multiple
indentations make the program easier to understand.

Instead of using two statements, one to calculate sum and another
to print it out, we can compact this into one single statement by
saying:

printf ("r = %d c = %d sum = %d\n", r, c, r + c) ;

The way for loops have been nested here, similarly, two while
loops can also be nested. Not only this, a for loop can occur within
a while loop, or a while within a for.

Multiple Initialisations in the for Loop

The initialisation expression of the for loop can contain more than
one statement separated by a comma. For example,

for (i = 1, j = 2 ; j <= 10 ; j++)

Multiple statements can also be used in the incrementation
expression of for loop; i.e., you can increment (or decrement) two
or more variables at the same time. However, only one expression
is allowed in the test expression. This expression may contain
several conditions linked together using logical operators.

Use of multiple statements in the initialisation expression also
demonstrates why semicolons are used to separate the three
expressions in the for loop. If commas had been used, they could
not also have been used to separate multiple statements in the
initialisation expression, without confusing the compiler.

116 Let Us C

The Odd Loop
The loops that we have used so far executed the statements within
them a finite number of times. However, in real life programming
one comes across a situation when it is not known beforehand how
many times the statements in the loop are to be executed. This
situation can be programmed as shown below:

/* Execution of a loop an unknown number of times */
main()
{
 char another ;
 int num ;
 do
 {
 printf ("Enter a number ") ;
 scanf ("%d", &num) ;
 printf ("square of %d is %d", num, num * num) ;
 printf ("\nWant to enter another number y/n ") ;
 scanf (" %c", &another) ;
 } while (another == 'y') ;
}

And here is the sample output...

Enter a number 5
square of 5 is 25
Want to enter another number y/n y
Enter a number 7
square of 7 is 49
Want to enter another number y/n n

In this program the do-while loop would keep getting executed till
the user continues to answer y. The moment he answers n, the loop
terminates, since the condition (another == 'y') fails. Note that
this loop ensures that statements within it are executed at least
once even if n is supplied first time itself.

Chapter 3: The Loop Control Structure 117

Though it is simpler to program such a requirement using a do-
while loop, the same functionality if required, can also be
accomplished using for and while loops as shown below:

/* odd loop using a for loop */
main()
{
 char another = 'y' ;
 int num ;
 for (; another == 'y' ;)
 {
 printf ("Enter a number ") ;
 scanf ("%d", &num) ;
 printf ("square of %d is %d", num, num * num) ;
 printf ("\nWant to enter another number y/n ") ;
 scanf (" %c", &another) ;
 }
}

/* odd loop using a while loop */
main()
{
 char another = 'y' ;
 int num ;

 while (another == 'y')
 {
 printf ("Enter a number ") ;
 scanf ("%d", &num) ;
 printf ("square of %d is %d", num, num * num) ;
 printf ("\nWant to enter another number y/n ") ;
 scanf (" %c", &another) ;
 }
}

118 Let Us C

The break Statement
We often come across situations where we want to jump out of a
loop instantly, without waiting to get back to the conditional test.
The keyword break allows us to do this. When break is
encountered inside any loop, control automatically passes to the
first statement after the loop. A break is usually associated with an
if. As an example, let’s consider the following example.

Example: Write a program to determine whether a number is
prime or not. A prime number is one, which is divisible only by 1
or itself.

All we have to do to test whether a number is prime or not, is to
divide it successively by all numbers from 2 to one less than itself.
If remainder of any of these divisions is zero, the number is not a
prime. If no division yields a zero then the number is a prime
number. Following program implements this logic.

main()
{
 int num, i ;

 printf ("Enter a number ") ;
 scanf ("%d", &num) ;

 i = 2 ;
 while (i <= num - 1)
 {
 if (num % i == 0)
 {
 printf ("Not a prime number") ;
 break ;
 }
 i++ ;
 }

Chapter 3: The Loop Control Structure 119

 if (i == num)
 printf ("Prime number") ;
}

In this program the moment num % i turns out to be zero, (i.e.
num is exactly divisible by i) the message “Not a prime number”
is printed and the control breaks out of the while loop. Why does
the program require the if statement after the while loop at all?
Well, there are two ways the control could have reached outside
the while loop:

(a)
(b)

It jumped out because the number proved to be not a prime.
The loop came to an end because the value of i became equal
to num.

When the loop terminates in the second case, it means that there
was no number between 2 to num - 1 that could exactly divide
num. That is, num is indeed a prime. If this is true, the program
should print out the message “Prime number”.

The keyword break, breaks the control only from the while in
which it is placed. Consider the following program, which
illustrates this fact.

main()
{
 int i = 1 , j = 1 ;

 while (i++ <= 100)
 {
 while (j++ <= 200)
 {
 if (j == 150)
 break ;
 else
 printf ("%d %d\n", i, j) ;
 }

120 Let Us C

 }
}

In this program when j equals 150, break takes the control outside
the inner while only, since it is placed inside the inner while.

The continue Statement
In some programming situations we want to take the control to the
beginning of the loop, bypassing the statements inside the loop,
which have not yet been executed. The keyword continue allows
us to do this. When continue is encountered inside any loop,
control automatically passes to the beginning of the loop.

A continue is usually associated with an if. As an example, let's
consider the following program.

main()
{
 int i, j ;

 for (i = 1 ; i <= 2 ; i++)
 {
 for (j = 1 ; j <= 2 ; j++)
 {
 if (i == j)
 continue ;

 printf ("\n%d %d\n", i, j) ;
 }
 }
}

The output of the above program would be...

1 2
2 1

Chapter 3: The Loop Control Structure 121

Note that when the value of i equals that of j, the continue
statement takes the control to the for loop (inner) bypassing rest of
the statements pending execution in the for loop (inner).

The do-while Loop
The do-while loop looks like this:

do
{
 this ;
 and this ;
 and this ;
 and this ;
} while (this condition is true) ;

There is a minor difference between the working of while and do-
while loops. This difference is the place where the condition is
tested. The while tests the condition before executing any of the
statements within the while loop. As against this, the do-while
tests the condition after having executed the statements within the
loop. Figure 3.5 would clarify the execution of do-while loop still
further.

122 Let Us C

True test

increment

False

body of loop

STOP

initialise

START

Figure 3.5

This means that do-while would execute its statements at least
once, even if the condition fails for the first time. The while, on
the other hand will not execute its statements if the condition fails
for the first time. This difference is brought about more clearly by
the following program.

main()
{
 while (4 < 1)
 printf ("Hello there \n") ;
}

Chapter 3: The Loop Control Structure 123

Here, since the condition fails the first time itself, the printf() will
not get executed at all. Let's now write the same program using a
do-while loop.

main()
{
 do
 {
 printf ("Hello there \n") ;
 } while (4 < 1) ;
}

In this program the printf() would be executed once, since first
the body of the loop is executed and then the condition is tested.

There are some occasions when we want to execute a loop at least
once no matter what. This is illustrated in the following example:

break and continue are used with do-while just as they would be
in a while or a for loop. A break takes you out of the do-while
bypassing the conditional test. A continue sends you straight to
the test at the end of the loop.

124 Let Us C

Summary
(a)

(b)
(c)

(d)

(e)

(f)

The three type of loops available in C are for, while, and do-
while.
A break statement takes the execution control out of the loop.
A continue statement skips the execution of the statements
after it and takes the control to the beginning of the loop.
A do-while loop is used to ensure that the statements within
the loop are executed at least once.
The ++ operator increments the operand by 1, whereas, the --
operator decrements it by 1.
The operators +=, -=, *=, /=, %= are compound assignment
operators. They modify the value of the operand to the left of
them.

Exercise

while Loop

[A] What would be the output of the following programs:

(a) main()

{
 int j ;
 while (j <= 10)
 {
 printf ("\n%d", j) ;
 j = j + 1 ;
 }
}

(b) main()

{
 int i = 1 ;
 while (i <= 10) ;
 {
 printf ("\n%d", i) ;

Chapter 3: The Loop Control Structure 125

 i++ ;
 }
}

(c) main()

{
 int j ;
 while (j <= 10)
 {
 printf ("\n%d", j) ;
 j = j + 1 ;
 }
}

(d) main()
{
 int x = 1 ;
 while (x == 1)
 {
 x = x - 1 ;
 printf ("\n%d", x) ;
 }
}

(e) main()

{
 int x = 1 ;
 while (x == 1)
 x = x - 1 ;
 printf ("\n%d", x) ;
}

(f) main()

{
 char x ;

126 Let Us C

 while (x = 0 ; x <= 255 ; x++)
 printf ("\nAscii value %d Character %c", x, x) ;
}

(g) main()

{
 int x = 4, y, z ;
 y = --x ;
 z = x-- ;
 printf ("\n%d %d %d", x, y, z) ;
}

(h) main()

{
 int x = 4, y = 3, z ;

 z = x-- -y ;
 printf ("\n%d %d %d", x, y, z) ;
}

(i) main()

{
 while ('a' < 'b')
 printf ("\nmalyalam is a palindrome") ;
}

(j) main()

{
 int i = 10 ;
 while (i = 20)
 printf ("\nA computer buff!") ;
}

(k) main()

{
 int i ;
 while (i = 10)
 {

Chapter 3: The Loop Control Structure 127

 printf ("\n%d", i) ;
 i = i + 1 ;
 }
}

(l) main()

{
 float x = 1.1 ;
 while (x == 1.1)
 {
 printf ("\n%f", x) ;
 x = x – 0.1 ;
 }
}

(m) main()

{
 while ('1' < '2')
 printf ("\nIn while loop") ;
}

(n) main()
{
 char x ;
 for (x = 0 ; x <= 255 ; x++)
 printf ("\nAscii value %d Character %c", x, x) ;
}

(o) main()

{
 int x = 4, y = 0, z ;
 while (x >= 0)
 {
 x-- ;
 y++ ;
 if (x == y)

128 Let Us C

 continue ;
 else
 printf (“\n%d %d”, x, y) ;
 }
}

(p) main()

{
 int x = 4, y = 0, z ;
 while (x >= 0)
 {
 if (x == y)
 break ;
 else
 printf (“\n%d %d”, x, y) ;
 x-- ;
 y++ ;
 }

 }

[B] Attempt the following:

(a)

(b)

(c)

(d)

Write a program to calculate overtime pay of 10 employees.
Overtime is paid at the rate of Rs. 12.00 per hour for every
hour worked above 40 hours. Assume that employees do not
work for fractional part of an hour.

 Write a program to find the factorial value of any number
entered through the keyboard.

Two numbers are entered through the keyboard. Write a
program to find the value of one number raised to the power
of another.

Write a program to print all the ASCII values and their
equivalent characters using a while loop. The ASCII values
vary from 0 to 255.

Chapter 3: The Loop Control Structure 129

(e)

(f)

(g)

(h)

(i)

Write a program to print out all Armstrong numbers between
1 and 500. If sum of cubes of each digit of the number is
equal to the number itself, then the number is called an
Armstrong number. For example, 153 = (1 * 1 * 1) + (5 * 5
* 5) + (3 * 3 * 3)

Write a program for a matchstick game being played between
the computer and a user. Your program should ensure that the
computer always wins. Rules for the game are as follows:

− There are 21 matchsticks.
− The computer asks the player to pick 1, 2, 3, or 4

matchsticks.
− After the person picks, the computer does its

picking.
− Whoever is forced to pick up the last matchstick

loses the game.

Write a program to enter the numbers till the user wants and
at the end it should display the count of positive, negative and
zeros entered.

Write a program to find the octal equivalent of the entered
number.

Write a program to find the range of a set of numbers. Range
is the difference between the smallest and biggest number in
the list.

for, break, continue, do-while

[C] What would be the output of the following programs:

(a) main()

{
 int i = 0 ;
 for (; i ;)

130 Let Us C

 printf ("\nHere is some mail for you") ;
}

(b) main()

{
 int i ;
 for (i = 1 ; i <= 5 ; printf ("\n%d", i)) ;
 i++ ;
}

(c) main()

{
 int i = 1, j = 1 ;
 for (; ;)
 {
 if (i > 5)
 break ;
 else
 j += i ;
 printf ("\n%d", j) ;
 i += j ;
 }
}

(d) main()
{
 int i ;
 for (i = 1 ; i <= 5 ; printf ("\n%c", 65)) ;
 i++ ;

 }

[D] Answer the following:

(a) The three parts of the loop expression in the for loop are:

the i____________ expression
the t____________ expression
the i____________ expression

Chapter 3: The Loop Control Structure 131

(b) An expression contains relational operators, assignment

operators, and arithmetic operators. In the absence of
parentheses, they will be evaluated in which of the following
order:

1. assignment, relational, arithmetic
2. arithmetic, relational, assignment
3. relational, arithmetic, assignment
4. assignment, arithmetic, relational

(c) The break statement is used to exit from:

1. an if statement
2. a for loop
3. a program
4. the main() function

(d) A do-while loop is useful when we want that the statements

within the loop must be executed:

1. Only once
2. At least once
3. More than once
4. None of the above

(e) In what sequence the initialization, testing and execution of

body is done in a do-while loop

1. Initialization, execution of body, testing
2. Execution of body, initialization, testing
3. Initialization, testing, execution of body
4. None of the above

(f) Which of the following is not an infinite loop.

1. int i = 1 ;
 while (1)
 {
 i++ ;
 }

2. for (; ;) ;

132 Let Us C

(g) Which of the following stateme
the beginning of the loop?

1. exit
2. break
3. continue
4. None of the above

[E] Attempt the following:

(a) Write a program to print all p

(Hint: Use nested loops, break

(b) Write a program to fill the enti

The smiling face has an ASCII

(c) Write a program to add first

series using a for loop:

1
1!

2
2!

3
3!

……

3. int True = 0, false ;
 while (True)
 {
 False = 1 ;
 }

(d) Write a program to generate a
using for loop.

(e) According to a study, the appro

a person can be calculated using

i = 2 + (y + 0.5 x)
4. int y, x = 0 ;
 do
 {
 y = x ;
 } while (x == 0) ;
nt is used to take the control to

rime numbers from 1 to 300.
and continue)

re screen with a smiling face.
value 1.

seven terms of the following

ll combinations of 1, 2 and 3

ximate level of intelligence of
 the following formula:

Chapter 3: The Loop Control Structure 133

Write a program, which will produce a table of values of i, y
and x, where y varies from 1 to 6, and, for each value of y, x
varies from 5.5 to 12.5 in steps of 0.5.

(f) Write a program to produce the following output:

A B C D E F G F E D C B A
A B C D E F F E D C B A
A B C D E E D C B A
A B C D D C B A
A B C C B A
A B B A
A A

(g) Write a program to fill the entire screen with diamond and

heart alternatively. The ASCII value for heart is 3 and that of
diamond is 4.

(h) Write a program to print the multiplication table of the

number entered by the user. The table should get displayed in
the following form.

 29 * 1 = 29
 29 * 2 = 58
 …

(i) Write a program to produce the following output:

 1

 2 3

 4 5 6

 7 8 9 10

134 Let Us C

(j) Write a program to produce the following output:

 1
 1 1
 1 2 1
 1 3 3 1
1 4 6 4 1

(k) A machine is purchased which will produce earning of Rs.

1000 per year while it lasts. The machine costs Rs. 6000 and
will have a salvage of Rs. 2000 when it is condemned. If 12
percent per annum can be earned on alternate investments
what would be the minimum life of the machine to make it a
more attractive investment compared to alternative
investment?

(l) When interest compounds q times per year at an annual rate of
r % for n years, the principle p compounds to an amount a as per
the following formula

a = p (1 + r / q) nq

Write a program to read 10 sets of p, r, n & q and calculate
the corresponding as.

(m) The natural logarithm can be approximated by the following
series.

If x is input through the keyboard, write a program to
calculate the sum of first seven terms of this series.

x x

x
x

x
x

−x +
−x +

−
⎜
⎛
⎝ ⎠

⎞⎟ +
−

⎜
⎝
⎛

2 31

2
⎜
⎛

⎝

1 1
⎟
⎞
⎠

1
2

1 1
2

1 4

⎟
⎞
⎠
+

4 The Case Control
 Structure

• Decisions Using switch

The Tips and Traps
• switch Versus if-else Ladder
• The goto Keyword
• Summary
• Exercise

135

136 Let Us C

n real life we are often faced with situations where we are
required to make a choice between a number of alternatives
rather than only one or two. For example, which school to join

or which hotel to visit or still harder which girl to marry (you
almost always end up making a wrong decision is a different
matter altogether!). Serious C programming is same; the choice we
are asked to make is more complicated than merely selecting
between two alternatives. C provides a special control statement
that allows us to handle such cases effectively; rather than using a
series of if statements. This control instruction is in fact the topic
of this chapter. Towards the end of the chapter we would also
study a keyword called goto, and understand why we should avoid
its usage in C programming.

I

Decisions Using switch
The control statement that allows us to make a decision from the
number of choices is called a switch, or more correctly a switch-
case-default, since these three keywords go together to make up
the control statement. They most often appear as follows:

switch (integer expression)
{
 case constant 1 :
 do this ;
 case constant 2 :
 do this ;
 case constant 3 :
 do this ;
 default :
 do this ;
}

The integer expression following the keyword switch is any C
expression that will yield an integer value. It could be an integer
constant like 1, 2 or 3, or an expression that evaluates to an

Chapter 4: The Case Control Structure 137

integer. The keyword case is followed by an integer or a character
constant. Each constant in each case must be different from all the
others. The “do this” lines in the above form of switch represent
any valid C statement.

What happens when we run a program containing a switch? First,
the integer expression following the keyword switch is evaluated.
The value it gives is then matched, one by one, against the
constant values that follow the case statements. When a match is
found, the program executes the statements following that case,
and all subsequent case and default statements as well. If no
match is found with any of the case statements, only the
statements following the default are executed. A few examples
will show how this control structure works.

Consider the following program:

main()
{
 int i = 2 ;

 switch (i)
 {
 case 1 :
 printf ("I am in case 1 \n") ;
 case 2 :
 printf ("I am in case 2 \n") ;
 case 3 :
 printf ("I am in case 3 \n") ;
 default :
 printf ("I am in default \n") ;
 }
}

The output of this program would be:

I am in case 2

138 Let Us C

I am in case 3
I am in default

The output is definitely not what we expected! We didn’t expect
the second and third line in the above output. The program prints
case 2 and 3 and the default case. Well, yes. We said the switch
executes the case where a match is found and all the subsequent
cases and the default as well.

If you want that only case 2 should get executed, it is upto you to
get out of the switch then and there by using a break statement.
The following example shows how this is done. Note that there is
no need for a break statement after the default, since the control
comes out of the switch anyway.

main()
{
 int i = 2 ;

 switch (i)
 {
 case 1 :
 printf ("I am in case 1 \n") ;
 break ;
 case 2 :
 printf ("I am in case 2 \n") ;
 break ;
 case 3 :
 printf ("I am in case 3 \n") ;
 break ;
 default :
 printf ("I am in default \n") ;
 }
}

The output of this program would be:
I am in case 2

Chapter 4: The Case Control Structure 139

The operation of switch is shown below in the form of a flowchart
for a better understanding.

STOP

No

case 1

case 2

case 3

case 4

switch (choice)
{
 case 1 :
 statement 1 ;
 break ;
 case 2 :
 statement 2 ;
 break ;
 case 3 :
 statement 3 ;
 break ;
 case 4 :
 statement 4 ;
}

statement 1

statement 2

statement 3

statement 4

No

No

No

Yes

Yes

Yes

Yes

START

Figure 4.1

140 Let Us C

The Tips and Traps

A few useful tips about the usage of switch and a few pitfalls to be
avoided:

(a)

(b)

The earlier program that used switch may give you the wrong
impression that you can use only cases arranged in ascending
order, 1, 2, 3 and default. You can in fact put the cases in any
order you please. Here is an example of scrambled case order:

main()
{
 int i = 22 ;

 switch (i)
 {
 case 121 :
 printf ("I am in case 121 \n") ;
 break ;
 case 7 :
 printf ("I am in case 7 \n") ;
 break ;
 case 22 :
 printf ("I am in case 22 \n") ;
 break ;
 default :
 printf ("I am in default \n") ;
 }
}

The output of this program would be:

I am in case 22

You are also allowed to use char values in case and switch as
shown in the following program:

main()

Chapter 4: The Case Control Structure 141

{
 char c = 'x' ;

 switch (c)
 {
 case 'v' :
 printf ("I am in case v \n") ;
 break ;
 case 'a' :
 printf ("I am in case a \n") ;
 break ;
 case 'x' :
 printf ("I am in case x \n") ;
 break ;
 default :
 printf ("I am in default \n") ;
 }
}

The output of this program would be:

I am in case x

In fact here when we use ‘v’, ‘a’, ‘x’ they are actually
replaced by the ASCII values (118, 97, 120) of these character
constants.

(c) At times we may want to execute a common set of statements
for multiple cases. How this can be done is shown in the
following example.

main()
{
 char ch ;

 printf ("Enter any of the alphabet a, b, or c ") ;
 scanf ("%c", &ch) ;

142 Let Us C

 switch (ch)
 {
 case 'a' :
 case 'A' :
 printf ("a as in ashar") ;
 break ;
 case 'b' :
 case 'B' :
 printf ("b as in brain") ;
 break ;
 case 'c' :
 case 'C' :
 printf ("c as in cookie") ;
 break ;
 default :
 printf ("wish you knew what are alphabets") ;
 }
}

Here, we are making use of the fact that once a case is
satisfied the control simply falls through the case till it
doesn’t encounter a break statement. That is why if an
alphabet a is entered the case ‘a’ is satisfied and since there
are no statements to be executed in this case the control
automatically reaches the next case i.e. case ‘A’ and executes
all the statements in this case.

(d)

(e)

Even if there are multiple statements to be executed in each
case there is no need to enclose them within a pair of braces
(unlike if, and else).

Every statement in a switch must belong to some case or the
other. If a statement doesn’t belong to any case the compiler
won’t report an error. However, the statement would never get
executed. For example, in the following program the printf()
never goes to work.

Chapter 4: The Case Control Structure 143

main()
{
 int i, j ;

 printf ("Enter value of i") ;
 scanf ("%d”, &i) ;

 switch (i)
 {
 printf ("Hello") ;
 case 1 :
 j = 10 ;
 break ;
 case 2 :
 j = 20 ;
 break ;
 }
}

(f)

(g)

If we have no default case, then the program simply falls
through the entire switch and continues with the next
instruction (if any,) that follows the closing brace of switch.

Is switch a replacement for if? Yes and no. Yes, because it
offers a better way of writing programs as compared to if, and
no because in certain situations we are left with no choice but
to use if. The disadvantage of switch is that one cannot have a
case in a switch which looks like:

 case i <= 20 :

All that we can have after the case is an int constant or a char
constant or an expression that evaluates to one of these
constants. Even a float is not allowed.

The advantage of switch over if is that it leads to a more
structured program and the level of indentation is manageable,

144 Let Us C

more so if there are multiple statements within each case of a
switch.

(h)

(i)

(j)

(k)

(a)
(b)

(c)

We can check the value of any expression in a switch. Thus
the following switch statements are legal.

 switch (i + j * k)
 switch (23 + 45 % 4 * k)
 switch (a < 4 && b > 7)

Expressions can also be used in cases provided they are
constant expressions. Thus case 3 + 7 is correct, however,
case a + b is incorrect.

The break statement when used in a switch takes the control
outside the switch. However, use of continue will not take
the control to the beginning of switch as one is likely to
believe.

In principle, a switch may occur within another, but in
practice it is rarely done. Such statements would be called
nested switch statements.

The switch statement is very useful while writing menu
driven programs. This aspect of switch is discussed in the
exercise at the end of this chapter.

switch Versus if-else Ladder
There are some things that you simply cannot do with a switch.
These are:

A float expression cannot be tested using a switch
Cases can never have variable expressions (for example it is
wrong to say case a +3 :)
Multiple cases cannot use same expressions. Thus the
following switch is illegal:

Chapter 4: The Case Control Structure 145

switch (a)
{
 case 3 :
 ...
 case 1 + 2 :
 ...
}

(a), (b) and (c) above may lead you to believe that these are
obvious disadvantages with a switch, especially since there
weren’t any such limitations with if-else. Then why use a switch at
all? For speed—switch works faster than an equivalent if-else
ladder. How come? This is because the compiler generates a jump
table for a switch during compilation. As a result, during
execution it simply refers the jump table to decide which case
should be executed, rather than actually checking which case is
satisfied. As against this, if-elses are slower because they are
evaluated at execution time. A switch with 10 cases would work
faster than an equivalent if-else ladder. Also, a switch with 2 cases
would work slower than if-else ladder. Why? If the 10th case is
satisfied then jump table would be referred and statements for the
10th case would be executed. As against this, in an if-else ladder 10
conditions would be evaluated at execution time, which makes it
slow. Note that a lookup in the jump table is faster than evaluation
of a condition, especially if the condition is complex.

If on the other hand the conditions in the if-else were simple and
less in number then if-else would work out faster than the lookup
mechanism of a switch. Hence a switch with two cases would
work slower than an equivalent if-else. Thus, you as a programmer
should take a decision which of the two should be used when.

The goto Keyword
Avoid goto keyword! They make a C programmer’s life miserable.
There is seldom a legitimate reason for using goto, and its use is

146 Let Us C

one of the reasons that programs become unreliable, unreadable,
and hard to debug. And yet many programmers find goto
seductive.

In a difficult programming situation it seems so easy to use a goto
to take the control where you want. However, almost always, there
is a more elegant way of writing the same program using if, for,
while and switch. These constructs are far more logical and easy
to understand.

The big problem with gotos is that when we do use them we can
never be sure how we got to a certain point in our code. They
obscure the flow of control. So as far as possible skip them. You
can always get the job done without them. Trust me, with good
programming skills goto can always be avoided. This is the first
and last time that we are going to use goto in this book. However,
for sake of completeness of the book, the following program
shows how to use goto.

main()
{
 int goals ;

 printf ("Enter the number of goals scored against India") ;
 scanf ("%d", &goals) ;

 if (goals <= 5)
 goto sos ;
 else
 {
 printf ("About time soccer players learnt C\n") ;
 printf ("and said goodbye! adieu! to soccer") ;
 exit() ; /* terminates program execution */
 }

 sos :
 printf ("To err is human!") ;

Chapter 4: The Case Control Structure 147

}

And here are two sample runs of the program...

Enter the number of goals scored against India 3
To err is human!
Enter the number of goals scored against India 7
About time soccer players learnt C
and said goodbye! adieu! to soccer

A few remarks about the program would make the things clearer.

− If the condition is satisfied the goto statement transfers control

to the label ‘sos’, causing printf() following sos to be
executed.

− The label can be on a separate line or on the same line as the

statement following it, as in,

sos : printf ("To err is human!") ;

− Any number of gotos can take the control to the same label.

− The exit() function is a standard library function which

terminates the execution of the program. It is necessary to use
this function since we don't want the statement

printf ("To err is human!")

to get executed after execution of the else block.

− The only programming situation in favour of using goto is

when we want to take the control out of the loop that is
contained in several other loops. The following program
illustrates this.

148 Let Us C

main()
{
 int i, j, k ;

 for (i = 1 ; i <= 3 ; i++)
 {
 for (j = 1 ; j <= 3 ; j++)
 {
 for (k = 1 ; k <= 3 ; k++)
 {
 if (i == 3 && j == 3 && k == 3)
 goto out ;
 else
 printf ("%d %d %d\n", i, j, k) ;
 }
 }
 }
 out :
 printf ("Out of the loop at last!") ;
}

Go through the program carefully and find out how it works. Also
write down the same program without using goto.

Summary
(a)

(b)

(c)

(d)

(e)

When we need to choose one among number of alternatives, a
switch statement is used.
The switch keyword is followed by an integer or an
expression that evaluates to an integer.
The case keyword is followed by an integer or a character
constant.
The control falls through all the cases unless the break
statement is given.
The usage of the goto keyword should be avoided as it usually
violets the normal flow of execution.

Chapter 4: The Case Control Structure 149

Exercise

[A] What would be the output of the following programs:

(a) main()

{
 char suite = 3 ;
 switch (suite)
 {
 case 1 :
 printf ("\nDiamond") ;
 case 2 :
 printf ("\nSpade") ;
 default :
 printf ("\nHeart") ;
 }
 printf ("\nI thought one wears a suite") ;
}

(b) main()
{
 int c = 3 ;

 switch (c)
 {
 case 'v' :
 printf ("I am in case v \n") ;
 break ;
 case 3 :
 printf ("I am in case 3 \n") ;
 break ;
 case 12 :
 printf ("I am in case 12 \n") ;
 break ;
 default :
 printf ("I am in default \n") ;
 }

150 Let Us C

}

(c) main()
{
 int k, j = 2 ;
 switch (k = j + 1)
 {
 case 0 :
 printf ("\nTailor") ;
 case 1 :
 printf ("\nTutor") ;
 case 2 :
 printf ("\nTramp") ;
 default :
 printf ("\nPure Simple Egghead!") ;
 }
}

(d) main()
{
 int i = 0 ;
 switch (i)
 {
 case 0 :
 printf ("\nCustomers are dicey") ;
 case 1 :
 printf ("\nMarkets are pricey") ;
 case 2 :
 printf ("\nInvestors are moody") ;
 case 3 :
 printf ("\nAt least employees are good") ;
 }
}

(e) main()
{
 int k ;
 float j = 2.0 ;

Chapter 4: The Case Control Structure 151

 switch (k = j + 1)
 {
 case 3 :
 printf ("\nTrapped") ;
 break ;
 default :
 printf ("\nCaught!") ;
 }
}

(f) main()
{
 int ch = 'a' + 'b' ;
 switch (ch)
 {
 case 'a' :
 case 'b' :
 printf ("\nYou entered b") ;
 case 'A' :
 printf ("\na as in ashar") ;
 case 'b' + 'a' :
 printf ("\nYou entered a and b") ;
 }
}

(g) main()
{
 int i = 1 ;
 switch (i - 2)
 {
 case -1 :
 printf ("\nFeeding fish") ;
 case 0 :
 printf ("\nWeeding grass") ;
 case 1 :
 printf ("\nmending roof") ;
 default :
 printf ("\nJust to survive") ;

152 Let Us C

 }
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{
 int suite = 1 ;
 switch (suite) ;
 {
 case 0 ;
 printf ("\nClub") ;
 case 1 ;
 printf ("\nDiamond") ;
 }
}

(b) main()
{
 int temp ;
 scanf ("%d", &temp) ;
 switch (temp)
 {
 case (temp <= 20) :
 printf ("\nOoooooohhhh! Damn cool!") ;
 case (temp > 20 && temp <= 30) :
 printf ("\nRain rain here again!") ;
 case (temp > 30 && temp <= 40) :
 printf ("\nWish I am on Everest") ;
 default :
 printf ("\nGood old nagpur weather") ;
 }
}

(c) main()
{
 float a = 3.5 ;
 switch (a)

Chapter 4: The Case Control Structure 153

 {
 case 0.5 :
 printf ("\nThe art of C") ;
 break ;
 case 1.5 :
 printf ("\nThe spirit of C") ;
 break ;
 case 2.5 :
 printf ("\nSee through C") ;
 break ;
 case 3.5 :
 printf ("\nSimply c") ;
 }
}

(d) main()
{
 int a = 3, b = 4, c ;
 c = b – a ;
 switch (c)
 {
 case 1 || 2 :
 printf ("God give me an opportunity to change things") ;
 break ;

 case a || b :
 printf ("God give me an opportunity to run my show") ;
 break ;
 }
}

[C] Write a menu driven program which has following options:

 1. Factorial of a number.

 2. Prime or not
 3. Odd or even
 4. Exit

154 Let Us C

Make use of switch statement.

The outline of this program is given below:

/* A menu driven program */
main()
{
 int choice ;
 while (1)
 {
 printf ("\n1. Factorial") ;
 printf ("\n2. Prime") ;
 printf ("\n3. Odd/Even") ;
 printf ("\n4. Exit") ;
 printf ("\nYour choice? ") ;
 scanf ("%d", &choice) ;

 switch (choice)
 {
 case 1 :
 /* logic for factorial of a number */
 break ;
 case 2 :
 /* logic for deciding prime number */
 break ;
 case 3 :
 /* logic for odd/even */
 break ;
 case 4 :
 exit() ;
 }
 }
}

Note:

Chapter 4: The Case Control Structure 155

The statement while (1) puts the entire logic in an infinite loop.
This is necessary since the menu must keep reappearing on the
screen once an item is selected and an appropriate action taken.

[D] Write a program which to find the grace marks for a student
using switch. The user should enter the class obtained by the
student and the number of subjects he has failed in.

− If the student gets first class and the number of subjects he

failed in is greater than 3, then he does not get any grace.
If the number of subjects he failed in is less than or equal
to 3 then the grace is of 5 marks per subject.

− If the student gets second class and the number of subjects

he failed in is greater than 2, then he does not get any
grace. If the number of subjects he failed in is less than or
equal to 2 then the grace is of 4 marks per subject.

− If the student gets third class and the number of subjects

he failed in is greater than 1, then he does not get any
grace. If the number of subjects he failed in is equal to 1
then the grace is of 5 marks per subject

156 Let Us C

5 Functions &
 Pointers

• What is a Function

Why Use Functions
• Passing Values between Functions
• Scope Rule of Functions
• Calling Convention
• One Dicey Issue
• Advanced Features of Functions

Function Declaration and Prototypes
Call by Value and Call by Reference
An Introduction to Pointers
Pointer Notation
Back to Function Calls
Conclusions
Recursion

• Adding Functions to the Library
• Summary
• Exercise

157

158 Let Us C

nowingly or unknowingly we rely on so many persons for
so many things. Man is an intelligent species, but still
cannot perform all of life’s tasks all alone. He has to rely

on others. You may call a mechanic to fix up your bike, hire a
gardener to mow your lawn, or rely on a store to supply you
groceries every month. A computer program (except for the
simplest one) finds itself in a similar situation. It cannot handle all
the tasks by itself. Instead, it requests other program like
entities—called ‘functions’ in C—to get its tasks done. In this
chapter we will study these functions. We will look at a variety of
features of these functions, starting with the simplest one and then
working towards those that demonstrate the power of C functions.

K

What is a Function
A function is a self-contained block of statements that perform a
coherent task of some kind. Every C program can be thought of as
a collection of these functions. As we noted earlier, using a
function is something like hiring a person to do a specific job for
you. Sometimes the interaction with this person is very simple;
sometimes it’s complex.

Suppose you have a task that is always performed exactly in the
same way—say a bimonthly servicing of your motorbike. When
you want it to be done, you go to the service station and say, “It’s
time, do it now”. You don’t need to give instructions, because the
mechanic knows his job. You don’t need to be told when the job is
done. You assume the bike would be serviced in the usual way, the
mechanic does it and that’s that.

Let us now look at a simple C function that operates in much the
same way as the mechanic. Actually, we will be looking at two
things—a function that calls or activates the function and the
function itself.

Chapter 5: Functions & Pointers 159

main()
{
 message() ;
 printf ("\nCry, and you stop the monotony!") ;
}
message()
{
 printf ("\nSmile, and the world smiles with you...") ;
}

And here’s the output...

Smile, and the world smiles with you...
Cry, and you stop the monotony!

Here, main() itself is a function and through it we are calling the
function message(). What do we mean when we say that main()
‘calls’ the function message()? We mean that the control passes to
the function message(). The activity of main() is temporarily
suspended; it falls asleep while the message() function wakes up
and goes to work. When the message() function runs out of
statements to execute, the control returns to main(), which comes
to life again and begins executing its code at the exact point where
it left off. Thus, main() becomes the ‘calling’ function, whereas
message() becomes the ‘called’ function.

If you have grasped the concept of ‘calling’ a function you are
prepared for a call to more than one function. Consider the
following example:

main()
{
 printf ("\nI am in main") ;
 italy() ;
 brazil() ;
 argentina() ;
}

160 Let Us C

italy()
{
 printf ("\nI am in italy") ;

}
brazil()
{
 printf ("\nI am in brazil") ;
}
argentina()
{
 printf ("\nI am in argentina") ;
}

The output of the above program when executed would be as
under:

I am in main
I am in italy
I am in brazil
I am in argentina

From this program a number of conclusions can be drawn:

− Any C program contains at least one function.

− If a program contains only one function, it must be main().

− If a C program contains more than one function, then one (and

only one) of these functions must be main(), because program
execution always begins with main().

− There is no limit on the number of functions that might be

present in a C program.

− Each function in a program is called in the sequence specified

by the function calls in main().

Chapter 5: Functions & Pointers 161

− After each function has done its thing, control returns to

main().When main() runs out of function calls, the program
ends.

As we have noted earlier the program execution always begins
with main(). Except for this fact all C functions enjoy a state of
perfect equality. No precedence, no priorities, nobody is nobody’s
boss. One function can call another function it has already called
but has in the meantime left temporarily in order to call a third
function which will sometime later call the function that has called
it, if you understand what I mean. No? Well, let’s illustrate with an
example.

main()
{
 printf ("\nI am in main") ;
 italy() ;
 printf ("\nI am finally back in main") ;
}
italy()
{
 printf ("\nI am in italy") ;
 brazil() ;
 printf ("\nI am back in italy") ;
}
brazil()
{
 printf ("\nI am in brazil") ;
 argentina() ;
}
argentina()
{
 printf ("\nI am in argentina") ;
}

And the output would look like...

162 Let Us C

I am in main
I am in italy
I am in brazil
I am in argentina
I am back in italy
I am finally back in main

Here, main() calls other functions, which in turn call still other
functions. Trace carefully the way control passes from one
function to another. Since the compiler always begins the program
execution with main(), every function in a program must be
called directly or indirectly by main(). In other words, the main()
function drives other functions.

Let us now summarize what we have learnt so far.

(a)
(b)

(c)

C program is a collection of one or more functions.
A function gets called when the function name is followed by
a semicolon. For example,

main()
{
 argentina() ;
}

A function is defined when function name is followed by a
pair of braces in which one or more statements may be
present. For example,

argentina()
{
 statement 1 ;
 statement 2 ;
 statement 3 ;
}

Chapter 5: Functions & Pointers 163

(d)

(e)

(f)

Any function can be called from any other function. Even
main() can be called from other functions. For example,

main()
{
 message() ;
}
message()
{
 printf ("\nCan't imagine life without C") ;
 main() ;

}

A function can be called any number of times. For example,

main()
{
 message() ;
 message() ;
}
message()
{
 printf ("\nJewel Thief!!") ;
}

The order in which the functions are defined in a program and
the order in which they get called need not necessarily be
same. For example,

main()
{
 message1() ;
 message2() ;
}
message2()
{
 printf ("\nBut the butter was bitter") ;

164 Let Us C

}
message1()
{
 printf ("\nMary bought some butter") ;
}

Here, even though message1() is getting called before
message2(), still, message1() has been defined after
message2(). However, it is advisable to define the functions
in the same order in which they are called. This makes the
program easier to understand.

(g)

(h)

(i)

A function can call itself. Such a process is called ‘recursion’.
We would discuss this aspect of C functions later in this
chapter.

A function can be called from other function, but a function
cannot be defined in another function. Thus, the following
program code would be wrong, since argentina() is being
defined inside another function, main().

main()
{
 printf ("\nI am in main") ;
 argentina()
 {
 printf ("\nI am in argentina") ;
 }
}

There are basically two types of functions:

Library functions Ex. printf(), scanf() etc.
User-defined functions Ex. argentina(), brazil() etc.

As the name suggests, library functions are nothing but
commonly required functions grouped together and stored in

Chapter 5: Functions & Pointers 165

what is called a Library. This library of functions is present on
the disk and is written for us by people who write compilers
for us. Almost always a compiler comes with a library of
standard functions. The procedure of calling both types of
functions is exactly same.

Why Use Functions

Why write separate functions at all? Why not squeeze the entire
logic into one function, main()? Two reasons:

(a) Writing functions avoids rewriting the same code over and
over. Suppose you have a section of code in your program
that calculates area of a triangle. If later in the program you
want to calculate the area of a different triangle, you won’t
like it if you are required to write the same instructions all
over again. Instead, you would prefer to jump to a ‘section of
code’ that calculates area and then jump back to the place
from where you left off. This section of code is nothing but a
function.

(b) Using functions it becomes easier to write programs and keep
track of what they are doing. If the operation of a program can
be divided into separate activities, and each activity placed in
a different function, then each could be written and checked
more or less independently. Separating the code into modular
functions also makes the program easier to design and
understand.

What is the moral of the story? Don’t try to cram the entire logic in
one function. It is a very bad style of programming. Instead, break
a program into small units and write functions for each of these
isolated subdivisions. Don’t hesitate to write functions that are
called only once. What is important is that these functions perform
some logically isolated task.

166 Let Us C

Passing Values between Functions
The functions that we have used so far haven’t been very flexible.
We call them and they do what they are designed to do. Like our
mechanic who always services the motorbike in exactly the same
way, we haven’t been able to influence the functions in the way
they carry out their tasks. It would be nice to have a little more
control over what functions do, in the same way it would be nice
to be able to tell the mechanic, “Also change the engine oil, I am
going for an outing”. In short, now we want to communicate
between the ‘calling’ and the ‘called’ functions.

The mechanism used to convey information to the function is the
‘argument’. You have unknowingly used the arguments in the
printf() and scanf() functions; the format string and the list of
variables used inside the parentheses in these functions are
arguments. The arguments are sometimes also called ‘parameters’.

Consider the following program. In this program, in main() we
receive the values of a, b and c through the keyboard and then
output the sum of a, b and c. However, the calculation of sum is
done in a different function called calsum(). If sum is to be
calculated in calsum() and values of a, b and c are received in
main(), then we must pass on these values to calsum(), and once
calsum() calculates the sum we must return it from calsum()
back to main().

/* Sending and receiving values between functions */
main()
{
 int a, b, c, sum ;

 printf ("\nEnter any three numbers ") ;
 scanf ("%d %d %d", &a, &b, &c) ;

 sum = calsum (a, b, c) ;

Chapter 5: Functions & Pointers 167

 printf ("\nSum = %d", sum) ;
}

calsum (x, y, z)
int x, y, z ;
{
 int d ;

 d = x + y + z ;
 return (d) ;
}

And here is the output...

Enter any three numbers 10 20 30
Sum = 60

There are a number of things to note about this program:

(a) In this program, from the function main() the values of a, b
and c are passed on to the function calsum(), by making a
call to the function calsum() and mentioning a, b and c in the
parentheses:

sum = calsum (a, b, c) ;

In the calsum() function these values get collected in three
variables x, y and z:

calsum (x, y, z)
int x, y, z ;

(b) The variables a, b and c are called ‘actual arguments’,

whereas the variables x, y and z are called ‘formal
arguments’. Any number of arguments can be passed to a
function being called. However, the type, order and number of
the actual and formal arguments must always be same.

168 Let Us C

Instead of using different variable names x, y and z, we could
have used the same variable names a, b and c. But the
compiler would still treat them as different variables since
they are in different functions.

(c) There are two methods of declaring the formal arguments.
The one that we have used in our program is known as
Kernighan and Ritchie (or just K & R) method.

calsum (x, y, z)
int x, y, z ;

Another method is,

calsum (int x, int y, int z)

This method is called ANSI method and is more commonly
used these days.

(d) In the earlier programs the moment closing brace (}) of the
called function was encountered the control returned to the
calling function. No separate return statement was necessary
to send back the control.

This approach is fine if the called function is not going to
return any meaningful value to the calling function. In the
above program, however, we want to return the sum of x, y
and z. Therefore, it is necessary to use the return statement.

The return statement serves two purposes:

(1) On executing the return statement it immediately
transfers the control back to the calling program.

(2) It returns the value present in the parentheses after
return, to th3e calling program. In the above program
the value of sum of three numbers is being returned.

Chapter 5: Functions & Pointers 169

(e) There is no restriction on the number of return statements

that may be present in a function. Also, the return statement
need not always be present at the end of the called function.
The following program illustrates these facts.

fun()
{
 char ch ;

 printf ("\nEnter any alphabet ") ;
 scanf ("%c", &ch) ;

 if (ch >= 65 && ch <= 90)
 return (ch) ;
 else
 return (ch + 32) ;
}

In this function different return statements will be executed
depending on whether ch is capital or not.

(f) Whenever the control returns from a function some value is
definitely returned. If a meaningful value is returned then it
should be accepted in the calling program by equating the
called function to some variable. For example,

sum = calsum (a, b, c) ;

(g) All the following are valid return statements.

return (a) ;
return (23) ;
return (12.34) ;
return ;

170 Let Us C

In the last statement a garbage value is returned to the calling
function since we are not returning any specific value. Note
that in this case the parentheses after return are dropped.

(h) If we want that a called function should not return any value,
in that case, we must mention so by using the keyword void
as shown below.

void display()
{
 printf ("\nHeads I win...") ;
 printf ("\nTails you lose") ;
}

(i) A function can return only one value at a time. Thus, the

following statements are invalid.

return (a, b) ;
return (x, 12) ;

There is a way to get around this limitation, which would be
discussed later in this chapter when we learn pointers.

(j) If the value of a formal argument is changed in the called
function, the corresponding change does not take place in the
calling function. For example,

main()
{
 int a = 30 ;
 fun (a) ;
 printf ("\n%d", a) ;
}

fun (int b)
{
 b = 60 ;

Chapter 5: Functions & Pointers 171

 printf ("\n%d", b) ;
}

The output of the above program would be:

60
30

Thus, even though the value of b is changed in fun(), the
value of a in main() remains unchanged. This means that
when values are passed to a called function the values present
in actual arguments are not physically moved to the formal
arguments; just a photocopy of values in actual argument is
made into formal arguments.

Scope Rule of Functions
Look at the following program

main()
{
 int i = 20 ;
 display (i) ;
}

display (int j)
{
 int k = 35 ;
 printf ("\n%d", j) ;
 printf ("\n%d", k) ;
}

In this program is it necessary to pass the value of the variable i to
the function display()? Will it not become automatically available
to the function display()? No. Because by default the scope of a
variable is local to the function in which it is defined. The presence

172 Let Us C

of i is known only to the function main() and not to any other
function. Similarly, the variable k is local to the function
display() and hence it is not available to main(). That is why to
make the value of i available to display() we have to explicitly
pass it to display(). Likewise, if we want k to be available to
main() we will have to return it to main() using the return
statement. In general we can say that the scope of a variable is
local to the function in which it is defined.

Calling Convention
Calling convention indicates the order in which arguments are
passed to a function when a function call is encountered. There are
two possibilities here:

(a)
(b)

Arguments might be passed from left to right.
Arguments might be passed from right to left.

C language follows the second order.

Consider the following function call:

fun (a, b, c, d) ;

In this call it doesn’t matter whether the arguments are passed
from left to right or from right to left. However, in some function
call the order of passing arguments becomes an important
consideration. For example:

int a = 1 ;
printf ("%d %d %d", a, ++a, a++) ;

It appears that this printf() would output 1 2 3.

This however is not the case. Surprisingly, it outputs 3 3 1. This is
because C’s calling convention is from right to left. That is, firstly

Chapter 5: Functions & Pointers 173

1 is passed through the expression a++ and then a is incremented
to 2. Then result of ++a is passed. That is, a is incremented to 3
and then passed. Finally, latest value of a, i.e. 3, is passed. Thus in
right to left order 1, 3, 3 get passed. Once printf() collects them it
prints them in the order in which we have asked it to get them
printed (and not the order in which they were passed). Thus 3 3 1
gets printed.

One Dicey Issue
Consider the following function calls:

#include <conio.h>
clrscr () ;
gotoxy (10, 20) ;
ch = getch (a) ;

Here we are calling three standard library functions. Whenever we
call the library functions we must write their prototype before
making the call. This helps the compiler in checking whether the
values being passed and returned are as per the prototype
declaration. But since we don’t define the library functions (we
merely call them) we may not know the prototypes of library
functions. Hence when the library of functions is provided a set of
‘.h’ files is also provided. These files contain the prototypes of
library functions. But why multiple files? Because the library
functions are divided into different groups and one file is provided
for each group. For example, prototypes of all input/output
functions are provided in the file ‘stdio.h’, prototypes of all
mathematical functions are provided in the file ‘math.h’, etc.

On compilation of the above code the compiler reports all errors
due to the mismatch between parameters in function call and their
corresponding prototypes declared in the file ‘conio.h’. You can
even open this file and look at the prototypes. They would appear
as shown below:

174 Let Us C

void clrscr() ;
void gotoxy (int, int) ;
int getch() ;

Now consider the following function calls:

#include <stdio.h>
int i = 10, j = 20 ;

printf ("%d %d %d ", i, j) ;
printf ("%d", i, j) ;

The above functions get successfully compiled even though there
is a mismatch in the format specifiers and the variables in the list.
This is because printf() accepts variable number of arguments
(sometimes 2 arguments, sometimes 3 arguments, etc.), and even
with the mismatch above the call still matches with the prototype
of printf() present in ‘stdio.h’. At run-time when the first printf()
is executed, since there is no variable matching with the last
specifier %d, a garbage integer gets printed. Similarly, in the
second printf() since the format specifier for j has not been
mentioned its value does not get printed.

Advanced Features of Functions
With a sound basis of the preliminaries of C functions, let us now
get into their intricacies. Following advanced topics would be
considered here.

(a) Function Declaration and Prototypes
(b) Calling functions by value or by reference
(c) Recursion

Let us understand these features one by one.

Chapter 5: Functions & Pointers 175

Function Declaration and Prototypes

Any C function by default returns an int value. More specifically,
whenever a call is made to a function, the compiler assumes that
this function would return a value of the type int. If we desire that a
function should return a value other than an int, then it is necessary
to explicitly mention so in the calling function as well as in the
called function. Suppose we want to find out square of a number
using a function. This is how this simple program would look like:

main()
{
 float a, b ;

 printf ("\nEnter any number ") ;
 scanf ("%f", &a) ;

 b = square (a) ;
 printf ("\nSquare of %f is %f", a, b) ;
}

square (float x)
{
 float y ;

 y = x * x ;
 return (y) ;
}

And here are three sample runs of this program...

Enter any number 3
Square of 3 is 9.000000
Enter any number 1.5
Square of 1.5 is 2.000000
Enter any number 2.5
Square of 2.5 is 6.000000

176 Let Us C

The first of these answers is correct. But square of 1.5 is definitely
not 2. Neither is 6 a square of 2.5. This happened because any C
function, by default, always returns an integer value. Therefore,
even though the function square() calculates the square of 1.5 as
2.25, the problem crops up when this 2.25 is to be returned to
main(). square() is not capable of returning a float value. How
do we overcome this? The following program segment illustrates
how to make square() capable of returning a float value.

main()
{
 float square (float) ;
 float a, b ;

 printf ("\nEnter any number ") ;
 scanf ("%f", &a) ;

 b = square (a) ;
 printf ("\nSquare of %f is %f", a, b) ;
}

float square (float x)
{
 float y ;
 y = x * x ;
 return (y) ;
}

And here is the output...

Enter any number 1.5
Square of 1.5 is 2.250000
Enter any number 2.5
Square of 2.5 is 6.250000

Chapter 5: Functions & Pointers 177

Now the expected answers i.e. 2.25 and 6.25 are obtained. Note
that the function square() must be declared in main() as

float square (float) ;

This statement is often called the prototype declaration of the
square() function. What it means is square() is a function that
receives a float and returns a float. We have done the prototype
declaration in main() because we have called it from main().
There is a possibility that we may call square() from several other
functions other than main(). Does this mean that we would need
prototype declaration of square() in all these functions. No, in
such a case we would make only one declaration outside all the
functions at the beginning of the program.

In practice you may seldom be required to return a value other
than an int, but just in case you are required to, employ the above
method. In some programming situations we want that a called
function should not return any value. This is made possible by
using the keyword void. This is illustrated in the following
program.

main()
{
 void gospel() ;
 gospel() ;
}

void gospel()
{
 printf ("\nViruses are electronic bandits...") ;
 printf ("\nwho eat nuggets of information...") ;
 printf ("\nand chunks of bytes...") ;
 printf ("\nwhen you least expect...") ;
}

178 Let Us C

Here, the gospel() function has been defined to return void; means
it would return nothing. Therefore, it would just flash the four
messages about viruses and return the control back to the main()
function.

Call by Value and Call by Reference

By now we are well familiar with how to call functions. But, if you
observe carefully, whenever we called a function and passed
something to it we have always passed the ‘values’ of variables to
the called function. Such function calls are called ‘calls by value’.
By this what we mean is, on calling a function we are passing
values of variables to it. The examples of call by value are shown
below:

sum = calsum (a, b, c) ;
f = factr (a) ;

We have also learnt that variables are stored somewhere in
memory. So instead of passing the value of a variable, can we not
pass the location number (also called address) of the variable to a
function? If we were able to do so it would become a ‘call by
reference’. What purpose a ‘call by reference’ serves we would
find out a little later. First we must equip ourselves with
knowledge of how to make a ‘call by reference’. This feature of C
functions needs at least an elementary knowledge of a concept
called ‘pointers’. So let us first acquire the basics of pointers after
which we would take up this topic once again.

An Introduction to Pointers

Which feature of C do beginners find most difficult to understand?
The answer is easy: pointers. Other languages have pointers but
few use them so frequently as C does. And why not? It is C’s
clever use of pointers that makes it the excellent language it is.

Chapter 5: Functions & Pointers 179

The difficulty beginners have with pointers has much to do with
C’s pointer terminology than the actual concept. For instance,
when a C programmer says that a certain variable is a “pointer”,
what does that mean? It is hard to see how a variable can point to
something, or in a certain direction.

It is hard to get a grip on pointers just by listening to programmer’s
jargon. In our discussion of C pointers, therefore, we will try to
avoid this difficulty by explaining pointers in terms of
programming concepts we already understand. The first thing we
want to do is explain the rationale of C’s pointer notation.

Pointer Notation

Consider the declaration,

int i = 3 ;

This declaration tells the C compiler to:

(a) Reserve space in memory to hold the integer value.
(b) Associate the name i with this memory location.
(c) Store the value 3 at this location.

We may represent i’s location in memory by the following
memory map.

location name

3

i

location number

value at location

65524

Figure 5.1

180 Let Us C

We see that the computer has selected memory location 65524 as
the place to store the value 3. The location number 65524 is not a
number to be relied upon, because some other time the computer
may choose a different location for storing the value 3. The
important point is, i’s address in memory is a number.

We can print this address number through the following program:

main()
{
 int i = 3 ;
 printf ("\nAddress of i = %u", &i) ;
 printf ("\nValue of i = %d", i) ;
}

The output of the above program would be:

Address of i = 65524
Value of i = 3

Look at the first printf() statement carefully. ‘&’ used in this
statement is C’s ‘address of’ operator. The expression &i returns
the address of the variable i, which in this case happens to be
65524. Since 65524 represents an address, there is no question of a
sign being associated with it. Hence it is printed out using %u,
which is a format specifier for printing an unsigned integer. We
have been using the ‘&’ operator all the time in the scanf()
statement.

The other pointer operator available in C is ‘*’, called ‘value at
address’ operator. It gives the value stored at a particular address.
The ‘value at address’ operator is also called ‘indirection’
operator.

Observe carefully the output of the following program:

Chapter 5: Functions & Pointers 181

main()
{
 int i = 3 ;

 printf ("\nAddress of i = %u", &i) ;
 printf ("\nValue of i = %d", i) ;
 printf ("\nValue of i = %d", *(&i)) ;
}

The output of the above program would be:

Address of i = 65524
Value of i = 3
Value of i = 3

Note that printing the value of *(&i) is same as printing the value
of i.

The expression &i gives the address of the variable i. This address
can be collected in a variable, by saying,
j = &i ;
But remember that j is not an ordinary variable like any other
integer variable. It is a variable that contains the address of other
variable (i in this case). Since j is a variable the compiler must
provide it space in the memory. Once again, the following memory
map would illustrate the contents of i and j.

j i

65522

65524

65524

3

Figure 5.2

182 Let Us C

As you can see, i’s value is 3 and j’s value is i’s address.

But wait, we can’t use j in a program without declaring it. And
since j is a variable that contains the address of i, it is declared as,

int *j ;

This declaration tells the compiler that j will be used to store the
address of an integer value. In other words j points to an integer.
How do we justify the usage of * in the declaration,

int *j ;

Let us go by the meaning of *. It stands for ‘value at address’.
Thus, int *j would mean, the value at the address contained in j is
an int.

Here is a program that demonstrates the relationships we have
been discussing.

main()
{
 int i = 3 ;
 int *j ;

 j = &i ;
 printf ("\nAddress of i = %u", &i) ;
 printf ("\nAddress of i = %u", j) ;
 printf ("\nAddress of j = %u", &j) ;
 printf ("\nValue of j = %u", j) ;
 printf ("\nValue of i = %d", i) ;
 printf ("\nValue of i = %d", *(&i)) ;
 printf ("\nValue of i = %d", *j) ;
}

The output of the above program would be:

Chapter 5: Functions & Pointers 183

Address of i = 65524
Address of i = 65524
Address of j = 65522
Value of j = 65524
Value of i = 3
Value of i = 3
Value of i = 3

Work through the above program carefully, taking help of the
memory locations of i and j shown earlier. This program
summarizes everything that we have discussed so far. If you don’t
understand the program’s output, or the meanings of &i, &j, *j
and *(&i), re-read the last few pages. Everything we say about C
pointers from here onwards will depend on your understanding
these expressions thoroughly.

Look at the following declarations,

int *alpha ;
char *ch ;
float *s ;

Here, alpha, ch and s are declared as pointer variables, i.e.
variables capable of holding addresses. Remember that, addresses
(location nos.) are always going to be whole numbers, therefore
pointers always contain whole numbers. Now we can put these two
facts together and say—pointers are variables that contain
addresses, and since addresses are always whole numbers, pointers
would always contain whole numbers.

The declaration float *s does not mean that s is going to contain a
floating-point value. What it means is, s is going to contain the
address of a floating-point value. Similarly, char *ch means that
ch is going to contain the address of a char value. Or in other
words, the value at address stored in ch is going to be a char.

184 Let Us C

The concept of pointers can be further extended. Pointer, we know
is a variable that contains address of another variable. Now this
variable itself might be another pointer. Thus, we now have a
pointer that contains another pointer’s address. The following
example should make this point clear.

main()
{
 int i = 3, *j, **k ;

 j = &i ;
 k = &j ;
 printf ("\nAddress of i = %u", &i) ;
 printf ("\nAddress of i = %u", j) ;
 printf ("\nAddress of i = %u", *k) ;
 printf ("\nAddress of j = %u", &j) ;
 printf ("\nAddress of j = %u", k) ;
 printf ("\nAddress of k = %u", &k) ;
 printf ("\nValue of j = %u", j) ;
 printf ("\nValue of k = %u", k) ;
 printf ("\nValue of i = %d", i) ;
 printf ("\nValue of i = %d", * (&i)) ;
 printf ("\nValue of i = %d", *j) ;
 printf ("\nValue of i = %d", **k) ;
}

The output of the above program would be:

Address of i = 65524

Address of i = 65524
Address of i = 65524
Address of j = 65522
Address of j = 65522
Address of k = 65520
Value of j = 65524
Value of k = 65522

Chapter 5: Functions & Pointers 185

Value of i = 3
Value of i = 3
Value of i = 3
Value of i = 3

Figure 5.3 would help you in tracing out how the program prints
the above output.

Remember that when you run this program the addresses that get
printed might turn out to be something different than the ones
shown in the figure. However, with these addresses too the
relationship between i, j and k can be easily established.

65520

65522

i j k

6552265524

655243

Figure 5.3

Observe how the variables j and k have been declared,

int i, *j, **k ;

Here, i is an ordinary int, j is a pointer to an int (often called an
integer pointer), whereas k is a pointer to an integer pointer. We
can extend the above program still further by creating a pointer to
a pointer to an integer pointer. In principle, you would agree that
likewise there could exist a pointer to a pointer to a pointer to a
pointer to a pointer. There is no limit on how far can we go on
extending this definition. Possibly, till the point we can
comprehend it. And that point of comprehension is usually a
pointer to a pointer. Beyond this one rarely requires to extend the
definition of a pointer. But just in case...

186 Let Us C

Back to Function Calls

Having had the first tryst with pointers let us now get back to what
we had originally set out to learn—the two types of function
calls—call by value and call by reference. Arguments can
generally be passed to functions in one of the two ways:

(a) sending the values of the arguments
(b) sending the addresses of the arguments

In the first method the ‘value’ of each of the actual arguments in
the calling function is copied into corresponding formal arguments
of the called function. With this method the changes made to the
formal arguments in the called function have no effect on the
values of actual arguments in the calling function. The following
program illustrates the ‘Call by Value’.

main()
{
 int a = 10, b = 20 ;

 swapv (a, b) ;
 printf ("\na = %d b = %d", a, b) ;
}

swapv (int x, int y)
{
 int t ;

 t = x ;
 x = y ;
 y = t ;

 printf ("\nx = %d y = %d", x, y) ;
}

The output of the above program would be:

Chapter 5: Functions & Pointers 187

x = 20 y = 10
a = 10 b = 20

Note that values of a and b remain unchanged even after
exchanging the values of x and y.

In the second method (call by reference) the addresses of actual
arguments in the calling function are copied into formal arguments
of the called function. This means that using these addresses we
would have an access to the actual arguments and hence we would
be able to manipulate them. The following program illustrates this
fact.

main()
{
 int a = 10, b = 20 ;

 swapr (&a, &b) ;
 printf ("\na = %d b = %d", a, b) ;
}

swapr(int *x, int *y)
{
 int t ;

 t = *x ;
 *x = *y ;
 *y = t ;
}

The output of the above program would be:

a = 20 b = 10

Note that this program manages to exchange the values of a and b
using their addresses stored in x and y.

188 Let Us C

Usually in C programming we make a call by value. This means
that in general you cannot alter the actual arguments. But if
desired, it can always be achieved through a call by reference.

Using a call by reference intelligently we can make a function
return more than one value at a time, which is not possible
ordinarily. This is shown in the program given below.

main()
{
 int radius ;
 float area, perimeter ;

 printf ("\nEnter radius of a circle ") ;
 scanf ("%d", &radius) ;
 areaperi (radius, &area, &perimeter) ;

 printf ("Area = %f", area) ;
 printf ("\nPerimeter = %f", perimeter) ;
}

areaperi (int r, float *a, float *p)
{
 *a = 3.14 * r * r ;
 *p = 2 * 3.14 * r ;
}

And here is the output...

Enter radius of a circle 5
Area = 78.500000
Perimeter = 31.400000

Here, we are making a mixed call, in the sense, we are passing the
value of radius but, addresses of area and perimeter. And since
we are passing the addresses, any change that we make in values
stored at addresses contained in the variables a and p, would make

Chapter 5: Functions & Pointers 189

the change effective in main(). That is why when the control
returns from the function areaperi() we are able to output the
values of area and perimeter.

Thus, we have been able to indirectly return two values from a
called function, and hence, have overcome the limitation of the
return statement, which can return only one value from a function
at a time.

Conclusions

From the programs that we discussed here we can draw the
following conclusions:

(a)

(b)

(c)

If we want that the value of an actual argument should not get
changed in the function being called, pass the actual argument
by value.

If we want that the value of an actual argument should get
changed in the function being called, pass the actual argument
by reference.

If a function is to be made to return more than one value at a
time then return these values indirectly by using a call by
reference.

Recursion

In C, it is possible for the functions to call themselves. A function
is called ‘recursive’ if a statement within the body of a function
calls the same function. Sometimes called ‘circular definition’,
recursion is thus the process of defining something in terms of
itself.

Let us now see a simple example of recursion. Suppose we want to
calculate the factorial value of an integer. As we know, the

190 Let Us C

factorial of a number is the product of all the integers between 1
and that number. For example, 4 factorial is 4 * 3 * 2 * 1. This can
also be expressed as 4! = 4 * 3! where ‘!’ stands for factorial. Thus
factorial of a number can be expressed in the form of itself. Hence
this can be programmed using recursion. However, before we try
to write a recursive function for calculating factorial let us take a
look at the non-recursive function for calculating the factorial
value of an integer.

main()
{
 int a, fact ;

 printf ("\nEnter any number ") ;
 scanf ("%d", &a) ;

 fact = factorial (a) ;
 printf ("Factorial value = %d", fact) ;
}

factorial (int x)
{
 int f = 1, i ;

 for (i = x ; i >= 1 ; i--)
 f = f * i ;

 return (f) ;
}

And here is the output...

Enter any number 3
Factorial value = 6

Chapter 5: Functions & Pointers 191

Work through the above program carefully, till you understand the
logic of the program properly. Recursive factorial function can be
understood only if you are thorough with the above logic.

Following is the recursive version of the function to calculate the
factorial value.

main()
{
 int a, fact ;

 printf ("\nEnter any number ") ;
 scanf ("%d", &a) ;

 fact = rec (a) ;
 printf ("Factorial value = %d", fact) ;
}

rec (int x)
{
 int f ;

 if (x == 1)
 return (1) ;
 else
 f = x * rec (x - 1) ;

 return (f) ;
}

And here is the output for four runs of the program

Enter any number 1
Factorial value = 1
Enter any number 2
Factorial value = 2
Enter any number 3

192 Let Us C

Factorial value = 6
Enter any number 5
Factorial value = 120

Let us understand this recursive factorial function thoroughly. In
the first run when the number entered through scanf() is 1, let us
see what action does rec() take. The value of a (i.e. 1) is copied
into x. Since x turns out to be 1 the condition if (x == 1) is
satisfied and hence 1 (which indeed is the value of 1 factorial) is
returned through the return statement.

When the number entered through scanf() is 2, the (x == 1) test
fails, so we reach the statement,

f = x * rec (x - 1) ;

And here is where we meet recursion. How do we handle the
expression x * rec (x - 1)? We multiply x by rec (x - 1). Since
the current value of x is 2, it is same as saying that we must
calculate the value (2 * rec (1)). We know that the value returned
by rec (1) is 1, so the expression reduces to (2 * 1), or simply 2.
Thus the statement,

x * rec (x - 1) ;

evaluates to 2, which is stored in the variable f, and is returned to
main(), where it is duly printed as

Factorial value = 2

Now perhaps you can see what would happen if the value of a is 3,
4, 5 and so on.

In case the value of a is 5, main() would call rec() with 5 as its
actual argument, and rec() will send back the computed value. But
before sending the computed value, rec() calls rec() and waits for
a value to be returned. It is possible for the rec() that has just been

Chapter 5: Functions & Pointers 193

called to call yet another rec(), the argument x being decreased in
value by 1 for each of these recursive calls. We speak of this series
of calls to rec() as being different invocations of rec(). These
successive invocations of the same function are possible because
the C compiler keeps track of which invocation calls which. These
recursive invocations end finally when the last invocation gets an
argument value of 1, which the preceding invocation of rec() now
uses to calculate its own f value and so on up the ladder. So we
might say what happens is,

rec (5) returns (5 times rec (4),
 which returns (4 times rec (3),
 which returns (3 times rec (2),
 which returns (2 times rec (1),
 which returns (1)))))

Foxed? Well, that is recursion for you in its simplest garbs. I hope
you agree that it’s difficult to visualize how the control flows from
one function call to another. Possibly Figure 5.4 would make
things a bit clearer.

Assume that the number entered through scanf() is 3. Using
Figure 5.4 let’s visualize what exactly happens when the recursive
function rec() gets called. Go through the figure carefully. The
first time when rec() is called from main(), x collects 3. From
here, since x is not equal to 1, the if block is skipped and rec() is
called again with the argument (x – 1), i.e. 2. This is a recursive
call. Since x is still not equal to 1, rec() is called yet another time,
with argument (2 - 1). This time as x is 1, control goes back to
previous rec() with the value 1, and f is evaluated as 2.

Similarly, each rec() evaluates its f from the returned value, and
finally 6 is returned to main(). The sequence would be grasped
better by following the arrows shown in Figure 5.4. Let it be clear
that while executing the program there do not exist so many copies
of the function rec(). These have been shown in the figure just to

194 Let Us C

help you keep track of how the control flows during successive
recursive calls.

from main()

rec (int x)
{
 int f ;

 if (x == 1)
 return (1) ;
 else
 f = x * rec (x – 1) ; f = x * rec (x – 1)

 return (f) ;
}

to main()

rec (int x)
{
 int f ;

 if (x == 1)
 return (1) ;
 else

; f = x * rec (x – 1) ;

 return (f) ;
}

rec (int x)
{
 int f ;

 if (x == 1)
 return (1) ;
 else

 return (f) ;
}

Figure 5.4

Recursion may seem strange and complicated at first glance, but it
is often the most direct way to code an algorithm, and once you are
familiar with recursion, the clearest way of doing so.

Recursion and Stack

There are different ways in which data can be organized. For
example, if you are to store five numbers then we can store them
in five different variables, an array, a linked list, a binary tree, etc.
All these different ways of organizing the data are known as data
structures. The compiler uses one such data structure called stack
for implementing normal as well as recursive function calls.

Chapter 5: Functions & Pointers 195

A stack is a Last In First Out (LIFO) data structure. This means
that the last item to get stored on the stack (often called Push
operation) is the first one to get out of it (often called as Pop
operation). You can compare this to the stack of plates in a
cafeteria—the last plate that goes on the stack is the first one to get
out of it. Now let us see how the stack works in case of the
following program.

main()
{
 int a = 5, b = 2, c ;
 c = add (a, b) ;
 printf ("sum = %d", c) ;
}
add (int i, int j)
{
 int sum ;
 sum = i + j ;
 return sum ;
}

In this program before transferring the execution control to the
function fun() the values of parameters a and b are pushed onto
the stack. Following this the address of the statement printf() is
pushed on the stack and the control is transferred to fun(). It is
necessary to push this address on the stack. In fun() the values of
a and b that were pushed on the stack are referred as i and j. In
fun() the local variable sum gets pushed on the stack. When
value of sum is returned sum is popped up from the stack. Next
the address of the statement where the control should be returned
is popped up from the stack. Using this address the control returns
to the printf() statement in main(). Before execution of printf()
begins the two integers that were earlier pushed on the stack are
now popped off.

How the values are being pushed and popped even though we
didn’t write any code to do so? Simple—the compiler on

196 Let Us C

encountering the function call would generate code to push
parameters and the address. Similarly, it would generate code to
clear the stack when the control returns back from fun(). Figure
5.5 shows the contents of the stack at different stages of execution.

 Address of
printf() xxxx

 Copy of a 5 Copy of a 5
 Copy of b 2 Copy of b 2

Before transfering
control to fun()

When call to
fun() is met

sum 7

Address xxxx xxxx

i 5 5

j 2 2

Empty stack

After co trol
reaches fun()

n While returnin
control from fun()

g

 Figure 5.5

Note that in this program popping of sum and
fun(), whereas popping of the two integers i
When it is done this way it is known
Convention’. There are other calling convent
instead of main(), fun() itself clears the two i
convention also decides whether the paramet
the function are pushed on the stack in left-to-
order. The standard calling convention always
On returning control
from fun()
 address is done by
s done by main().
as ‘CDecl Calling
ions as well where
ntegers. The calling
ers being passed to
right or right-to-left
uses the right-to-left

Chapter 5: Functions & Pointers 197

order. Thus during the call to fun() firstly value of b is pushed to
the stack, followed by the value of a.

The recursive calls are no different. Whenever we make a
recursive call the parameters and the return address gets pushed on
the stack. The stack gets unwound when the control returns from
the called function. Thus during every recursive function call we
are working with a fresh set of parameters.

Also, note that while writing recursive functions you must have an
if statement somewhere in the recursive function to force the
function to return without recursive call being executed. If you
don’t do this and you call the function, you will fall in an
indefinite loop, and the stack will keep on getting filled with
parameters and the return address each time there is a call. Soon
the stack would become full and you would get a run-time error
indicating that the stack has become full. This is a very common
error while writing recursive functions. My advice is to use
printf() statement liberally during the development of recursive
function, so that you can watch what is going on and can abort
execution if you see that you have made a mistake.

Adding Functions to the Library
Most of the times we either use the functions present in the
standard library or we define our own functions and use them. Can
we not add our functions to the standard library? And would it
make any sense in doing so? We can add user-defined functions to
the library. It makes sense in doing so as the functions that are to
be added to the library are first compiled and then added. When we
use these functions (by calling them) we save on their compilation
time as they are available in the library in the compiled form.

Let us now see how to add user-defined functions to the library.
Different compilers provide different utilities to add/delete/modify
functions in the standard library. For example, Turbo C/C++

198 Let Us C

compilers provide a utility called ‘tlib.exe’ (Turbo Librarian). Let
us use this utility to add a function factorial() to the library.

Given below are the steps to do so:

(a)

(b)

(c)

(d)

(e)

Write the function definition of factorial() in some file, say
‘fact.c’.

int factorial (int num)
{
 int i, f = 1 ;
 for (i = 1 ; i <= num ; i++)
 f = f * i ;
 return (f) ;
}

Compile the ‘fact.c’ file using Alt F9. A new file called
‘fact.obj’ would get created containing the compiled code in
machine language.

Add the function to the library by issuing the command

C:\>tlib math.lib + c:\fact.obj

Here, ‘math.lib’ is a library filename, + is a switch, which
means we want to add new function to library and ‘c:\fact.obj’
is the path of the ‘.obj’ file.

Declare the prototype of the factorial() function in the header
file, say ‘fact.h’. This file should be included while calling the
function.

To use the function present inside the library, create a
program as shown below:

#include "c:\\fact.h"
main()

Chapter 5: Functions & Pointers 199

{
 int f ;
 f = factorial (5) ;
 printf ("%d", f) ;
}

(f)

(a)

(b)

(c)

Compile and execute the program using Ctrl F9.

If we wish we can delete the existing functions present in the
library using the minus (-) switch.

Instead of modifying the existing libraries we can create our own
library. Let’s see how to do this. Let us assume that we wish to
create a library containing the functions factorial(), prime() and
fibonacci(). As their names suggest, factorial() calculates and
returns the factorial value of the integer passed to it, prime()
reports whether the number passed to it is a prime number or not
and fibonacci() prints the first n terms of the Fibonacci series,
where n is the number passed to it. Here are the steps that need to
be carried out to create this library. Note that these steps are
specific to Turbo C/C++ compiler and would vary for other
compilers.

Define the functions factorial(), prime() and fibonacci() in
a file, say ‘myfuncs.c’. Do not define main() in this file.

Create a file ‘myfuncs.h’ and declare the prototypes of
factorial(), prime() and fibonacci() in it as shown below:

int factorial (int) ;
int prime (int) ;
void fibonacci (int) ;

From the Options menu select the menu-item ‘Application’.
From the dialog that pops us select the option ‘Library’.
Select OK.

200 Let Us C

(d)

(a)

(b)

(c)

(d)

Compile the program using Alt F9. This would create the
library file called ‘myfuncs.lib’.

That’s it. The library now stands created. Now we have to use the
functions defined in this library. Here is how it can be done.

Create a file, say ‘sample.c’ and type the following code in it.

#include "myfuncs.h"
main()
{
 int f, result ;
 f = factorial (5) ;
 result = prime (13) ;
 fibonacci (6) ;
 printf ("\n%d %d", f, result) ;
}

Note that the file ‘myfuncs.h’ should be in the same directory
as the file ‘sample.c’. If not, then while including ‘myfuncs.h’
mention the appropriate path.

Go to the ‘Project’ menu and select ‘Open Project…’ option.
On doing so a dialog would pop up. Give the name of the
project, say ‘sample.prj’ and select OK.

From the ‘Project’ menu select ‘Add Item’. On doing so a file
dialog would appear. Select the file ‘sample.c’ and then select
‘Add’. Also add the file ‘myfuncs.lib’ in the same manner.
Finally select ‘Done’.

Compile and execute the project using Ctrl F9.

Chapter 5: Functions & Pointers 201

Summary
(a)

(b)

(c)
(d)

(e)
(f)
(g)

(h)

(i)

To avoid repetition of code and bulky programs functionally
related statements are isolated into a function.
Function declaration specifies what is the return type of the
function and the types of parameters it accepts.
Function definition defines the body of the function.
Variables declared in a function are not available to other
functions in a program. So, there won’t be any clash even if
we give same name to the variables declared in different
functions.
Pointers are variables which hold addresses of other variables.
A function can be called either by value or by reference.
Pointers can be used to make a function return more than one
value simultaneously.
Recursion is difficult to understand, but in some cases offer a
better solution than loops.
Adding too many functions and calling them frequently may
slow down the program execution.

Exercise

Simple functions, Passing values between functions

[A] What would be the output of the following programs:

(a) main()

{
 printf ("\nOnly stupids use C?") ;
 display() ;
}
display()
{
 printf ("\nFools too use C!") ;
 main() ;
}

202 Let Us C

(b) main()
{
 printf ("\nC to it that C survives") ;
 main() ;
}

(c) main()

{
 int i = 45, c ;
 c = check (i) ;
 printf ("\n%d", c) ;
}
check (int ch)
{
 if (ch >= 45)
 return (100) ;
 else
 return (10 * 10) ;
}

(d) main()

{
 int i = 45, c ;
 c = multiply (i * 1000) ;
 printf ("\n%d", c) ;
}
check (int ch)
{
 if (ch >= 40000)
 return (ch / 10) ;
 else
 return (10) ;
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{

Chapter 5: Functions & Pointers 203

 int i = 3, j = 4, k, l ;
 k = addmult (i, j) ;
 l = addmult (i, j) ;
 printf ("\n%d %d", k, l) ;
}
addmult (int ii, int jj)
{
 int kk, ll ;
 kk = ii + jj ;
 ll = ii * jj ;
 return (kk, ll) ;
}

(b) main()

{
 int a ;
 a = message() ;
}
message()
{
 printf ("\nViruses are written in C") ;
 return ;
}

(c) main()

{
 float a = 15.5 ;
 char ch = 'C' ;
 printit (a, ch) ;
}
printit (a, ch)
{
 printf ("\n%f %c", a, ch) ;
}

(d) main()

{
 message() ;

204 Let Us C

 message() ;
}
message() ;
{
 printf ("\nPraise worthy and C worthy are synonyms") ;
}

(e) main()

{
 let_us_c()
 {
 printf ("\nC is a Cimple minded language !") ;
 printf ("\nOthers are of course no match !") ;
 }
}

(f) main()
{
 message(message ()) ;
}
void message()
{
 printf ("\nPraise worthy and C worthy are synonyms") ;
}

[C] Answer the following:

(a) Is this a correctly written function:

sqr (a) ;
int a ;
{
 return (a * a) ;
}

(b) State whether the following statements are True or False:

Chapter 5: Functions & Pointers 205

1. The variables commonly used in C functions are available
to all the functions in a program.

2. To return the control back to the calling function we must

use the keyword return.

3. The same variable names can be used in different
functions without any conflict.

4. Every called function must contain a return statement.

5. A function may contain more than one return statements.

6. Each return statement in a function may return a different

value.

7. A function can still be useful even if you don’t pass any
arguments to it and the function doesn’t return any value
back.

8. Same names can be used for different functions without

any conflict.

9. A function may be called more than once from any other
function.

10. It is necessary for a function to return some value.

[D] Answer the following:

(a) Write a function to calculate the factorial value of any integer

entered through the keyboard.

(b) Write a function power (a, b), to calculate the value of a

raised to b.

206 Let Us C

(c) Write a general-purpose function to convert any given year
into its roman equivalent. The following table shows the
roman equivalents of decimal numbers:

Decimal Roman Decimal Roman

1 i 100 c
5 v 500 d
10 x 1000 m
50 l

Example:

Roman equivalent of 1988 is mdcccclxxxviii
Roman equivalent of 1525 is mdxxv

(d) Any year is entered through the keyboard. Write a function to
determine whether the year is a leap year or not.

(e) A positive integer is entered through the keyboard. Write a

function to obtain the prime factors of this number.

For example, prime factors of 24 are 2, 2, 2 and 3, whereas
prime factors of 35 are 5 and 7.

Function Prototypes, Call by Value/Reference, Pointers

[E] What would be the output of the following programs:

(a) main()

{
 float area ;
 int radius = 1 ;
 area = circle (radius) ;
 printf ("\n%f", area) ;
}
circle (int r)

Chapter 5: Functions & Pointers 207

{
 float a ;
 a = 3.14 * r * r ;
 return (a) ;
}

(b) main()

{
 void slogan() ;
 int c = 5 ;
 c = slogan() ;
 printf ("\n%d", c) ;
}
void slogan()
{
 printf ("\nOnly He men use C!") ;
}

[F] Answer the following:

(a) Write a function which receives a float and an int from

main(), finds the product of these two and returns the product
which is printed through main().

(b) Write a function that receives 5 integers and returns the sum,

average and standard deviation of these numbers. Call this
function from main() and print the results in main().

(c) Write a function that receives marks received by a student in 3

subjects and returns the average and percentage of these
marks. Call this function from main() and print the results in
main().

[G] What would be the output of the following programs:

(a) main()

{
 int i = 5, j = 2 ;

208 Let Us C

 junk (i, j) ;
 printf ("\n%d %d", i, j) ;
}
junk (int i, int j)
{
 i = i * i ;
 j = j * j ;
}

(b) main()

{
 int i = 5, j = 2 ;
 junk (&i, &j) ;
 printf ("\n%d %d", i, j) ;
}
junk (int *i, int *j)
{
 *i = *i * *i ;
 *j = *j * *j ;
}

(c) main()

{
 int i = 4, j = 2 ;
 junk (&i, j) ;
 printf ("\n%d %d", i, j) ;
}
junk (int *i, int j)
{
 *i = *i * *i ;
 j = j * j ;
}

(d) main()

{
 float a = 13.5 ;
 float *b, *c ;
 b = &a ; /* suppose address of a is 1006 */

Chapter 5: Functions & Pointers 209

 c = b ;
 printf ("\n%u %u %u", &a, b, c) ;
 printf ("\n%f %f %f %f %f", a, *(&a), *&a, *b, *c) ;
}

[H] Point out the errors, if any, in the following programs:

(a) main()

{
 int i = 135, a = 135, k ;
 k = pass (i, a) ;
 printf ("\n%d", k) ;
}
pass (int j, int b)
int c ;
{
 c = j + b ;
 return (c) ;
}

(b) main()

{
 int p = 23, f = 24 ;
 jiaayjo (&p, &f) ;
 printf ("\n%d %d", p, f) ;
}
jiaayjo (int q, int g)
{
 q = q + q ;
 g = g + g ;
}

(c) main()

{
 int k = 35, z ;
 z = check (k) ;
 printf ("\n%d", z) ;
}

210 Let Us C

check (m)
{
 int m ;
 if (m > 40)
 return (1) ;
 else
 return (0) ;
}

(d) main()

{
 int i = 35, *z ;
 z = function (&i) ;
 printf ("\n%d", z) ;
}
function (int *m)
{
 return (m + 2) ;
}

[I] What would be the output of the following programs:

(a) main()

{
 int i = 0 ;
 i++ ;
 if (i <= 5)
 {
 printf ("\nC adds wings to your thoughts") ;
 exit() ;
 main() ;
 }
}

(b) main()

{
 static int i = 0 ;
 i++ ;

Chapter 5: Functions & Pointers 211

 if (i <= 5)
 {
 printf ("\n%d", i) ;
 main() ;
 }
 else
 exit() ;
}

[J] Attempt the following:

(a) A 5-digit positive integer is entered through the keyboard,

write a function to calculate sum of digits of the 5-digit
number:

(1) Without using recursion
(2) Using recursion

(b) A positive integer is entered through the keyboard, write a

program to obtain the prime factors of the number. Modify the
function suitably to obtain the prime factors recursively.

(c) Write a recursive function to obtain the first 25 numbers of a

Fibonacci sequence. In a Fibonacci sequence the sum of two
successive terms gives the third term. Following are the first
few terms of the Fibonacci sequence:

1 1 2 3 5 8 13 21 34 55 89...

(d) A positive integer is entered through the keyboard, write a
function to find the binary equivalent of this number using
recursion.

(e) Write a recursive function to obtain the running sum of first
25 natural numbers.

(f) Write a C function to evaluate the series

L+−+−=)!7/()!5/()!3/()sin(753 xxxxx

212 Let Us C

to five significant digits.

(g) Given three variables x, y, z write a function to circularly shift
their values to right. In other words if x = 5, y = 8, z = 10 after
circular shift y = 5, z = 8, x =10 after circular shift y = 5, z = 8
and x = 10. Call the function with variables a, b, c to
circularly shift values.

(h) Write a function to find the binary equivalent of a given
decimal integer and display it.

(i) If the lengths of the sides of a triangle are denoted by a, b,
and c, then area of triangle is given by

))()((cSbSaSSarea −−−=

where, S = (a + b + c) / 2

(j) Write a function to compute the distance between two points
and use it to develop another function that will compute the
area of the triangle whose vertices are A(x1, y1), B(x2, y2),
and C(x3, y3). Use these functions to develop a function
which returns a value 1 if the point (x, y) lines inside the
triangle ABC, otherwise a value 0.

(k) Write a function to compute the greatest common divisor
given by Euclid’s algorithm, exemplified for J = 1980, K =
1617 as follows:

1980 / 1617 = 1 1980 – 1 * 1617 = 363

1617 / 363 = 4 1617 – 4 * 363 = 165
363 / 165 = 2 363 – 2 * 165 = 33
5 / 33 = 5 165 – 5 * 33 = 0

Thus, the greatest common divisor is 33.

6 Data Types
 Revisited

• Integers, long and short
• Integers, signed and unsigned
• Chars, signed and unsigned
• Floats and Doubles
• A Few More Issues…
• Storage Classes in C

Automatic Storage Class
Register Storage Class
Static Storage Class
External Storage Class
Which to Use When

• Summary
• Exercise

213

214 Let Us C

s seen in the first chapter the primary data types could be of
three varieties—char, int, and float. It may seem odd to
many, how C programmers manage with such a tiny set of

data types. Fact is, the C programmers aren’t really deprived. They
can derive many data types from these three types. In fact, the
number of data types that can be derived in C, is in principle,
unlimited. A C programmer can always invent whatever data type
he needs.

A

Not only this, the primary data types themselves could be of
several types. For example, a char could be an unsigned char or a
signed char. Or an int could be a short int or a long int.
Sufficiently confusing? Well, let us take a closer look at these
variations of primary data types in this chapter.

To fully define a variable one needs to mention not only its type
but also its storage class. In this chapter we would be exploring the
different storage classes and their relevance in C programming.

Integers, long and short
We had seen earlier that the range of an Integer constant depends
upon the compiler. For a 16-bit compiler like Turbo C or Turbo
C++ the range is –32768 to 32767. For a 32-bit compiler the range
would be –2147483648 to +2147483647. Here a 16-bit compiler
means that when it compiles a C program it generates machine
language code that is targeted towards working on a 16-bit
microprocessor like Intel 8086/8088. As against this, a 32-bit
compiler like VC++ generates machine language code that is
targeted towards a 32-bit microprocessor like Intel Pentium. Note
that this does not mean that a program compiled using Turbo C
would not work on 32-bit processor. It would run successfully but
at that time the 32-bit processor would work as if it were a 16-bit
processor. This happens because a 32-bit processor provides
support for programs compiled using 16-bit compilers. If this
backward compatibility support is not provided the 16-bit program

Chapter 6: Data Types Revisited 215

would not run on it. This is precisely what happens on the new
Intel Itanium processors, which have withdrawn support for 16-bit
code.

Remember that out of the two/four bytes used to store an integer,
the highest bit (16th/32nd bit) is used to store the sign of the integer.
This bit is 1 if the number is negative, and 0 if the number is
positive.

C offers a variation of the integer data type that provides what are
called short and long integer values. The intention of providing
these variations is to provide integers with different ranges
wherever possible. Though not a rule, short and long integers
would usually occupy two and four bytes respectively. Each
compiler can decide appropriate sizes depending on the operating
system and hardware for which it is being written, subject to the
following rules:

(a)
(b)
(c)
(d)

shorts are at least 2 bytes big
longs are at least 4 bytes big
shorts are never bigger than ints
ints are never bigger than longs

Figure 6.1 shows the sizes of different integers based upon the OS
used.

 Compiler short int long

 16-bit (Turbo C/C++) 2 2 4
 32-bit (Visual C++) 2 4 4

Figure 6.1

long variables which hold long integers are declared using the
keyword long, as in,

216 Let Us C

long int i ;
long int abc ;

long integers cause the program to run a bit slower, but the range
of values that we can use is expanded tremendously. The value of
a long integer typically can vary from -2147483648 to
+2147483647. More than this you should not need unless you are
taking a world census.

If there are such things as longs, symmetry requires shorts as
well—integers that need less space in memory and thus help speed
up program execution. short integer variables are declared as,

short int j ;
short int height ;

C allows the abbreviation of short int to short and of long int to
long. So the declarations made above can be written as,

long i ;
long abc ;
short j ;
short height ;

Naturally, most C programmers prefer this short-cut.

Sometimes we come across situations where the constant is small
enough to be an int, but still we want to give it as much storage as
a long. In such cases we add the suffix ‘L’ or ‘l’ at the end of the
number, as in 23L.

Integers, signed and unsigned
Sometimes, we know in advance that the value stored in a given
integer variable will always be positive—when it is being used to

Chapter 6: Data Types Revisited 217

only count things, for example. In such a case we can declare the
variable to be unsigned, as in,

unsigned int num_students ;

With such a declaration, the range of permissible integer values
(for a 16-bit OS) will shift from the range -32768 to +32767 to the
range 0 to 65535. Thus, declaring an integer as unsigned almost
doubles the size of the largest possible value that it can otherwise
take. This so happens because on declaring the integer as
unsigned, the left-most bit is now free and is not used to store the
sign of the number. Note that an unsigned integer still occupies
two bytes. This is how an unsigned integer can be declared:

unsigned int i ;
unsigned i ;

Like an unsigned int, there also exists a short unsigned int and a
long unsigned int. By default a short int is a signed short int and
a long int is a signed long int.

Chars, signed and unsigned
Parallel to signed and unsigned ints (either short or long),
similarly there also exist signed and unsigned chars, both
occupying one byte each, but having different ranges. To begin
with it might appear strange as to how a char can have a sign.
Consider the statement

char ch = 'A' ;

Here what gets stored in ch is the binary equivalent of the ASCII
value of ‘A’ (i.e. binary of 65). And if 65’s binary can be stored,
then -54’s binary can also be stored (in a signed char).

218 Let Us C

A signed char is same as an ordinary char and has a range from
-128 to +127; whereas, an unsigned char has a range from 0 to
255. Let us now see a program that illustrates this range:

main()
{
 char ch = 291 ;
 printf ("\n%d %c", ch, ch) ;
}

What output do you expect from this program? Possibly, 291 and
the character corresponding to it. Well, not really. Surprised? The
reason is that ch has been defined as a char, and a char cannot
take a value bigger than +127. Hence when value of ch exceeds
+127, an appropriate value from the other side of the range is
picked up and stored in ch. This value in our case happens to be
35, hence 35 and its corresponding character #, gets printed out.

Here is another program that would make the concept clearer.

main()
{
 char ch ;

 for (ch = 0 ; ch <= 255 ; ch++)
 printf ("\n%d %c", ch, ch) ;
}

This program should output ASCII values and their corresponding
characters. Well, No! This is an indefinite loop. The reason is that
ch has been defined as a char, and a char cannot take values
bigger than +127. Hence when value of ch is +127 and we perform
ch++ it becomes -128 instead of +128. -128 is less than 255 hence
the condition is still satisfied. Here onwards ch would take values
like -127, -126, -125, -2, -1, 0, +1, +2, ... +127, -128, -127, etc.
Thus the value of ch would keep oscillating between -128 to +127,
thereby ensuring that the loop never gets terminated. How do you

Chapter 6: Data Types Revisited 219

overcome this difficulty? Would declaring ch as an unsigned char
solve the problem? Even this would not serve the purpose since
when ch reaches a value 255, ch++ would try to make it 256
which cannot be stored in an unsigned char. Thus the only
alternative is to declare ch as an int. However, if we are bent upon
writing the program using unsigned char, it can be done as shown
below. The program is definitely less elegant, but workable all the
same.

main()
{
 unsigned char ch ;

 for (ch = 0 ; ch <= 254 ; ch++)
 printf ("\n%d %c", ch, ch) ;

 printf ("\n%d %c", ch, ch) ;
}

Floats and Doubles
A float occupies four bytes in memory and can range from -3.4e38
to +3.4e38. If this is insufficient then C offers a double data type
that occupies 8 bytes in memory and has a range from -1.7e308 to
+1.7e308. A variable of type double can be declared as,

double a, population ;

If the situation demands usage of real numbers that lie even
beyond the range offered by double data type, then there exists a
long double that can range from -1.7e4932 to +1.7e4932. A long
double occupies 10 bytes in memory.

You would see that most of the times in C programming one is
required to use either chars or ints and cases where floats,
doubles or long doubles would be used are indeed rare.

220 Let Us C

Let us now write a program that puts to use all the data types that
we have learnt in this chapter. Go through the following program
carefully, which shows how to use these different data types. Note
the format specifiers used to input and output these data types.

main()
{
 char c ;
 unsigned char d ;
 int i ;
 unsigned int j ;
 short int k ;
 unsigned short int l ;
 long int m ;
 unsigned long int n ;
 float x ;
 double y ;
 long double z ;

 /* char */
 scanf ("%c %c", &c, &d) ;
 printf ("%c %c", c, d) ;

 /* int */
 scanf ("%d %u", &i, &j) ;
 printf ("%d %u", i, j) ;

 /* short int */
 scanf ("%d %u", &k, &l) ;
 printf ("%d %u", k, l) ;

 /* long int */
 scanf ("%ld %lu", &m, &n) ;
 printf ("%ld %lu", m, n) ;

 /* float, double, long double */
 scanf ("%f %lf %Lf", &x, &y, &z) ;
 printf ("%f %lf %Lf", x, y, z) ;

Chapter 6: Data Types Revisited 221

}

The essence of all the data types that we have learnt so far has
been captured in Figure 6.2.

 Data Type Range Bytes Format

 signed char -128 to + 127 1 %c
 unsigned char 0 to 255 1 %c
 short signed int -32768 to +32767 2 %d
 short unsigned int 0 to 65535 2 %u
 signed int -32768 to +32767 2 %d
 unsigned int 0 to 65535 2 %u
 long signed int -2147483648 to +2147483647 4 %ld
 long unsigned int 0 to 4294967295 4 %lu
 float -3.4e38 to +3.4e38 4 %f
 double -1.7e308 to +1.7e308 8 %lf
 long double -1.7e4932 to +1.7e4932 10 %Lf

 Note: The sizes and ranges of int, short and long are compiler
 dependent. Sizes in this figure are for 16-bit compiler.

Figure 6.2

A Few More Issues…
Having seen all the variations of the primary types let us take a
look at some more related issues.

(a) We saw earlier that size of an integer is compiler dependent.
This is even true in case of chars and floats. Also, depending
upon the microprocessor for which the compiler targets its
code the accuracy of floating point calculations may change.
For example, the result of 22.0/7.0 would be reported more

222 Let Us C

accurately by VC++ compiler as compared to TC/TC++
compilers. This is because TC/TC++ targets its compiled code
to 8088/8086 (16-bit) microprocessors. Since these
microprocessors do not offer floating point support, TC/TC++
performs all float operations using a software piece called
Floating Point Emulator. This emulator has limitations and
hence produces less accurate results. Also, this emulator
becomes part of the EXE file, thereby increasing its size. In
addition to this increased size there is a performance penalty
since this bigger code would take more time to execute.

(b)

(c)

If you look at ranges of chars and ints there seems to be one
extra number on the negative side. This is because a negative
number is always stored as 2’s compliment of its binary. For
example, let us see how -128 is stored. Firstly, binary of 128
is calculated (10000000), then its 1’s compliment is obtained
(01111111). A 1’s compliment is obtained by changing all 0s
to 1s and 1s to 0s. Finally, 2’s compliment of this number, i.e.
10000000, gets stored. A 2’s compliment is obtained by
adding 1 to the 1’s compliment. Thus, for -128, 10000000
gets stored. This is an 8-bit number and it can be easily
accommodated in a char. As against this, +128 cannot be
stored in a char because its binary 010000000 (left-most 0 is
for positive sign) is a 9-bit number. However +127 can be
stored as its binary 01111111 turns out to be a 8-bit number.

What happens when we attempt to store +128 in a char? The
first number on the negative side, i.e. -128 gets stored. This is
because from the 9-bit binary of +128, 010000000, only the
right-most 8 bits get stored. But when 10000000 is stored the
left-most bit is 1 and it is treated as a sign bit. Thus the value
of the number becomes -128 since it is indeed the binary
of -128, as can be understood from (b) above. Similarly, you
can verify that an attempt to store +129 in a char results in
storing -127 in it. In general, if we exceed the range from
positive side we end up on the negative side. Vice versa is

Chapter 6: Data Types Revisited 223

also true. If we exceed the range from negative side we end up
on positive side.

Storage Classes in C
We have already said all that needs to be said about constants, but
we are not finished with variables. To fully define a variable one
needs to mention not only its ‘type’ but also its ‘storage class’. In
other words, not only do all variables have a data type, they also
have a ‘storage class’.

We have not mentioned storage classes yet, though we have
written several programs in C. We were able to get away with this
because storage classes have defaults. If we don’t specify the
storage class of a variable in its declaration, the compiler will
assume a storage class depending on the context in which the
variable is used. Thus, variables have certain default storage
classes.

From C compiler’s point of view, a variable name identifies some
physical location within the computer where the string of bits
representing the variable’s value is stored. There are basically two
kinds of locations in a computer where such a value may be kept—
Memory and CPU registers. It is the variable’s storage class that
determines in which of these two locations the value is stored.

Moreover, a variable’s storage class tells us:

(a) Where the variable would be stored.
(b) What will be the initial value of the variable, if initial value is

not specifically assigned.(i.e. the default initial value).
(c) What is the scope of the variable; i.e. in which functions the

value of the variable would be available.
(d) What is the life of the variable; i.e. how long would the

variable exist.

224 Let Us C

There are four storage classes in C:

(a) Automatic storage class
(b) Register storage class
(c) Static storage class
(d) External storage class

Let us examine these storage classes one by one.

Automatic Storage Class

The features of a variable defined to have an automatic storage
class are as under:

Storage − Memory.
Default initial value − An unpredictable value, which is often

 called a garbage value.
Scope − Local to the block in which the variable

 is defined.
Life − Till the control remains within the block

 in which the variable is defined.

Following program shows how an automatic storage class variable
is declared, and the fact that if the variable is not initialized it
contains a garbage value.

main()
{
 auto int i, j ;
 printf ("\n%d %d", i, j) ;
}

The output of the above program could be...

1211 221

where, 1211 and 221 are garbage values of i and j. When you run
this program you may get different values, since garbage values

Chapter 6: Data Types Revisited 225

are unpredictable. So always make it a point that you initialize the
automatic variables properly, otherwise you are likely to get
unexpected results. Note that the keyword for this storage class is
auto, and not automatic.

Scope and life of an automatic variable is illustrated in the
following program.

main()
{
 auto int i = 1 ;
 {
 {
 {
 printf ("\n%d ", i) ;
 }
 printf ("%d ", i) ;
 }
 printf ("%d", i) ;
 }
}

The output of the above program is:

1 1 1
This is because, all printf() statements occur within the outermost
block (a block is all statements enclosed within a pair of braces) in
which i has been defined. It means the scope of i is local to the
block in which it is defined. The moment the control comes out of
the block in which the variable is defined, the variable and its
value is irretrievably lost. To catch my point, go through the
following program.

main()
{
 auto int i = 1 ;
 {

226 Let Us C

 auto int i = 2 ;
 {
 auto int i = 3 ;
 printf ("\n%d ", i) ;
 }
 printf ("%d ", i) ;
 }
 printf ("%d", i) ;
}

The output of the above program would be:

3 2 1

Note that the Compiler treats the three i’s as totally different
variables, since they are defined in different blocks. Once the
control comes out of the innermost block the variable i with value
3 is lost, and hence the i in the second printf() refers to i with
value 2. Similarly, when the control comes out of the next
innermost block, the third printf() refers to the i with value 1.

Understand the concept of life and scope of an automatic storage
class variable thoroughly before proceeding with the next storage
class.

Register Storage Class

The features of a variable defined to be of register storage class
are as under:

Storage - CPU registers.
Default initial value - Garbage value.
Scope - Local to the block in which the variable

 is defined.
Life - Till the control remains within the block

 in which the variable is defined.

Chapter 6: Data Types Revisited 227

A value stored in a CPU register can always be accessed faster
than the one that is stored in memory. Therefore, if a variable is
used at many places in a program it is better to declare its storage
class as register. A good example of frequently used variables is
loop counters. We can name their storage class as register.

main()
{
 register int i ;

 for (i = 1 ; i <= 10 ; i++)
 printf ("\n%d", i) ;
}

Here, even though we have declared the storage class of i as
register, we cannot say for sure that the value of i would be stored
in a CPU register. Why? Because the number of CPU registers are
limited, and they may be busy doing some other task. What
happens in such an event... the variable works as if its storage class
is auto.

Not every type of variable can be stored in a CPU register.

For example, if the microprocessor has 16-bit registers then they
cannot hold a float value or a double value, which require 4 and 8
bytes respectively. However, if you use the register storage class
for a float or a double variable you won’t get any error messages.
All that would happen is the compiler would treat the variables to
be of auto storage class.

Static Storage Class

The features of a variable defined to have a static storage class are
as under:

Storage − Memory.
Default initial value − Zero.

228 Let Us C

Scope − Local to the block in which the variable
 is defined.

Life − Value of the variable persists between
 different function calls.

Compare the two programs and their output given in Figure 6.3 to
understand the difference between the automatic and static
storage classes.

main()
 {
 increment() ;
 increment() ;
 increment() ;
 }

increment()
 {
 auto int i = 1 ;
 printf ("%d\n", i) ;
 i = i + 1 ;
 }

main()
{
 increment() ;
 increment() ;
 increment() ;
}

increment()
{
 static int i = 1 ;
 printf ("%d\n", i) ;
 i = i + 1 ;
}
 The output of the above programs would be:

1
2
3

1
1
1

Figure 6.3

The programs above consist of two functions main() and
increment(). The function increment() gets called from main()
thrice. Each time it increments the value of i and prints it. The only
difference in the two programs is that one uses an auto storage
class for variable i, whereas the other uses static storage class.

Chapter 6: Data Types Revisited 229

Like auto variables, static variables are also local to the block in
which they are declared. The difference between them is that static
variables don’t disappear when the function is no longer active.
Their values persist. If the control comes back to the same function
again the static variables have the same values they had last time
around.

In the above example, when variable i is auto, each time
increment() is called it is re-initialized to one. When the function
terminates, i vanishes and its new value of 2 is lost. The result: no
matter how many times we call increment(), i is initialized to 1
every time.

On the other hand, if i is static, it is initialized to 1 only once. It is
never initialized again. During the first call to increment(), i is
incremented to 2. Because i is static, this value persists. The next
time increment() is called, i is not re-initialized to 1; on the
contrary its old value 2 is still available. This current value of i
(i.e. 2) gets printed and then i = i + 1 adds 1 to i to get a value of 3.
When increment() is called the third time, the current value of i
(i.e. 3) gets printed and once again i is incremented. In short, if the
storage class is static then the statement static int i = 1 is executed
only once, irrespective of how many times the same function is
called.

Consider one more program.

main()
{
 int *j ;
 int * fun() ;
 j = fun() ;
 printf ("\n%d", *j) ;
}

int *fun()
{

230 Let Us C

 int k = 35 ;
 return (&k) ;
}

Here we are returning an address of k from fun() and collecting it
in j. Thus j becomes pointer to k. Then using this pointer we are
printing the value of k. This correctly prints out 35. Now try
calling any function (even printf()) immediately after the call to
fun(). This time printf() prints a garbage value. Why does this
happen? In the first case, when the control returned from fun()
though k went dead it was still left on the stack. We then accessed
this value using its address that was collected in j. But when we
precede the call to printf() by a call to any other function, the
stack is now changed, hence we get the garbage value. If we want
to get the correct value each time then we must declare k as static.
By doing this when the control returns from fun(), k would not
die.

All this having been said, a word of advice—avoid using static
variables unless you really need them. Because their values are
kept in memory when the variables are not active, which means
they take up space in memory that could otherwise be used by
other variables.

External Storage Class

The features of a variable whose storage class has been defined as
external are as follows:

Storage − Memory.
Default initial value − Zero.
Scope − Global.
Life − As long as the program’s execution

 doesn’t come to an end.

Chapter 6: Data Types Revisited 231

External variables differ from those we have already discussed in
that their scope is global, not local. External variables are declared
outside all functions, yet are available to all functions that care to
use them. Here is an example to illustrate this fact.

int i ;
main()
{
 printf ("\ni = %d", i) ;

 increment() ;
 increment() ;
 decrement() ;
 decrement() ;
}

increment()
{
 i = i + 1 ;
 printf ("\non incrementing i = %d", i) ;
}

decrement()
{
 i = i - 1 ;
 printf ("\non decrementing i = %d", i) ;
}

The output would be:

i = 0
on incrementing i = 1
on incrementing i = 2
on decrementing i = 1
on decrementing i = 0

232 Let Us C

As is obvious from the above output, the value of i is available to
the functions increment() and decrement() since i has been
declared outside all functions.

Look at the following program.

int x = 21 ;
main()
{
 extern int y ;
 printf ("\n%d %d", x, y) ;
}
int y = 31 ;

Here, x and y both are global variables. Since both of them have
been defined outside all the functions both enjoy external storage
class. Note the difference between the following:
extern int y ;
int y = 31 ;
Here the first statement is a declaration, whereas the second is the
definition. When we declare a variable no space is reserved for it,
whereas, when we define it space gets reserved for it in memory.
We had to declare y since it is being used in printf() before it’s
definition is encountered. There was no need to declare x since its
definition is done before its usage. Also remember that a variable
can be declared several times but can be defined only once.

Another small issue—what will be the output of the following
program?

int x = 10 ;
main()
{
 int x = 20 ;

 printf ("\n%d", x) ;

Chapter 6: Data Types Revisited 233

 display() ;
}
display()
{
 printf ("\n%d", x) ;
}

Here x is defined at two places, once outside main() and once
inside it. When the control reaches the printf() in main() which x
gets printed? Whenever such a conflict arises, it’s the local
variable that gets preference over the global variable. Hence the
printf() outputs 20. When display() is called and control reaches
the printf() there is no such conflict. Hence this time the value of
the global x, i.e. 10 gets printed.

One last thing—a static variable can also be declared outside all
the functions. For all practical purposes it will be treated as an
extern variable. However, the scope of this variable is limited to
the same file in which it is declared. This means that the variable
would not be available to any function that is defined in a file other
than the file in which the variable is defined.

Which to Use When

Dennis Ritchie has made available to the C programmer a number
of storage classes with varying features, believing that the
programmer is in a best position to decide which one of these
storage classes is to be used when. We can make a few ground
rules for usage of different storage classes in different
programming situations with a view to:

(a) economise the memory space consumed by the variables
(b) improve the speed of execution of the program

The rules are as under:

234 Let Us C

− Use static storage class only if you want the value of a
variable to persist between different function calls.

− Use register storage class for only those variables that are
being used very often in a program. Reason is, there are very
few CPU registers at our disposal and many of them might be
busy doing something else. Make careful utilization of the
scarce resources. A typical application of register storage class
is loop counters, which get used a number of times in a
program.

− Use extern storage class for only those variables that are being
used by almost all the functions in the program. This would
avoid unnecessary passing of these variables as arguments
when making a function call. Declaring all the variables as
extern would amount to a lot of wastage of memory space
because these variables would remain active throughout the
life of the program.

− If you don’t have any of the express needs mentioned above,
then use the auto storage class. In fact most of the times we
end up using the auto variables, because often it so happens
that once we have used the variables in a function we don’t
mind loosing them.

Summary
(a)

(b)

(c)

We can use different variations of the primary data types,
namely signed and unsigned char, long and short int, float,
double and long double. There are different format
specifications for all these data types when they are used in
scanf() and printf() functions.
The maximum value a variable can hold depends upon the
number of bytes it occupies in memory.
By default all the variables are signed. We can declare a
variable as unsigned to accommodate greater value without
increasing the bytes occupied.

Chapter 6: Data Types Revisited 235

(d) We can make use of proper storage classes like auto,
register, static and extern to control four properties of the
variable—storage, default initial value, scope and life.

Exercise

[A] What would be the output of the following programs:

(a) main()

{
 int i ;
 for (i = 0 ; i <= 50000 ; i++)
 printf ("\n%d", i) ;
}

(b) main()

{
 float a = 13.5 ;
 double b = 13.5 ;
 printf ("\n%f %lf", a, b) ;
}

(c) int i = 0 ;

main()
{
 printf ("\nmain's i = %d", i) ;
 i++ ;
 val() ;
 printf ("\nmain's i = %d", i) ;
 val() ;
}
val()
{
 i = 100 ;
 printf ("\nval's i = %d", i) ;
 i++ ;
}

236 Let Us C

(d) main()
{
 int x, y, s = 2 ;
 s *= 3 ;
 y = f (s) ;
 x = g (s) ;
 printf ("\n%d %d %d", s, y, x) ;
}
int t = 8 ;
f (int a)
{
 a += -5 ;
 t -= 4 ;
 return (a + t) ;
}
g (int a)
{
 a = 1 ;
 t += a ;
 return (a + t) ;
}

(e) main()

{
 static int count = 5 ;
 printf ("\ncount = %d", count--) ;
 if (count != 0)
 main() ;
}

(f) main()

{
 int i, j ;
 for (i = 1 ; i < 5 ; i++)
 {
 j = g (i) ;
 printf ("\n%d", j) ;
 }

Chapter 6: Data Types Revisited 237

}
g (int x)
{
 static int v = 1 ;
 int b = 3 ;
 v += x ;
 return (v + x + b) ;
}

(g) float x = 4.5 ;

main()
{
 float y, float f (float) ;
 x *= 2.0 ;
 y = f (x) ;
 printf ("\n%f %f", x, y) ;
}
float f (float a)
{
 a += 1.3 ;
 x -= 4.5 ;
 return (a + x) ;
}

(h) main()

{
 func() ;
 func() ;
}
func()
{
 auto int i = 0 ;
 register int j = 0 ;
 static int k = 0 ;
 i++ ; j++ ; k++ ;
 printf ("\n %d % d %d", i, j, k) ;
}

238 Let Us C

(i) int x = 10 ;
main()
{
 int x = 20 ;
 {
 int x = 30 ;
 printf ("\n%d", x) ;
 }
 printf ("\n%d", x) ;
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{
 long num ;
 num = 2 ;
 printf ("\n%ld", num) ;
}

(b) main()

{
 char ch = 200 ;
 printf ("\n%d", ch) ;
}

(c) main()

{
 unsigned a = 25 ;
 long unsigned b = 25l ;
 printf ("\n%lu %u", a, b) ;
}

(d) main()

{
 long float a = 25.345e454 ;
 unsigned double b = 25 ;
 printf ("\n%lf %d", a, b) ;

Chapter 6: Data Types Revisited 239

}

(e) main()

{
 float a = 25.345 ;
 float *b ;
 b = &a ;
 printf ("\n%f %u", a, b) ;
}

(f) static int y ;
main()
{
 static int z ;
 printf ("%d %d", y, z) ;
}

[C] State whether the following statements are True or False:

(a) Storage for a register storage class variable is allocated
each time the control reaches the block in which it is
present.

(b) An extern storage class variable is not available to the
functions that precede its definition, unless the variable is
explicitly declared in these functions.

(c) The value of an automatic storage class variable persists
between various function invocations.

(d) If the CPU registers are not available, the register storage
class variables are treated as static storage class variables.

(e) The register storage class variables cannot hold float
values.

(f) If we try to use register storage class for a float variable
the compiler will flash an error message.

240 Let Us C

(g) If the variable x is defined as extern and a variable x is
also defined as a local variable of some function, then the
global variable gets preference over the local variable.

(h) The default value for automatic variable is zero.

(i) The life of static variable is till the control remains within
the block in which it is defined.

(j) If a global variable is to be defined, then the extern
keyword is necessary in its declaration.

(k) The address of register variable is not accessible.

[D] Following program calculates the sum of digits of the number

12345. Go through it and find out why is it necessary to
declare the storage class of the variable sum as static.

main()
{
 int a ;
 a = sumdig (12345) ;
 printf ("\n%d", a) ;
}
sumdig (int num)
{
 static int sum ;
 int a, b ;
 a = num % 10 ;
 b = (num - a) / 10 ;
 sum = sum + a ;
 if (b != 0)
 sumdig (b) ;
 else
 return (sum) ;
}

7 The C Preproces-
 sor

• Features of C Preprocessor
• Macro Expansion

Macros with Arguments
Macros versus Functions

• File Inclusion
• Conditional Compilation
• #if and #elif Directives
• Miscellaneous Directives

#undef Directive
#pragma Directive

• Summary
• Exercise

241

242 Let Us C

he C preprocessor is exactly what its name implies. It is a
program that processes our source program before it is
passed to the compiler. Preprocessor commands (often

known as directives) form what can almost be considered a
language within C language. We can certainly write C programs
without knowing anything about the preprocessor or its facilities.
But preprocessor is such a great convenience that virtually all C
programmers rely on it. This chapter explores the preprocessor
directives and discusses the pros and cons of using them in
programs.

T

Features of C Preprocessor
There are several steps involved from the stage of writing a C
program to the stage of getting it executed. Figure 7.1 shows these
different steps along with the files created during each stage. You
can observe from the figure that our program passes through
several processors before it is ready to be executed. The input and
output to each of these processors is shown in Figure 7.2.

Note that if the source code is stored in a file PR1.C then the
expanded source code gets stored in a file PR1.I. When this
expanded source code is compiled the object code gets stored in
PR1.OBJ. When this object code is linked with the object code of
library functions the resultant executable code gets stored in
PR1.EXE.

The preprocessor offers several features called preprocessor
directives. Each of these preprocessor directives begin with a #
symbol. The directives can be placed anywhere in a program but
are most often placed at the beginning of a program, before the
first function definition. We would learn the following
preprocessor directives here:

(a) Macro expansion
(b) File inclusion

Chapter 7: The C Preprocessor 243

Text editor

Preprocessor

Compiler

Linker

Executable code (PR1.EXE)

Object code (PR1.OBJ)

Expanded source code (PR1.I)

C Source code (PR1.C)

Hand written program

Figure 7.1

 Processor Input Output

 Editor Program typed from
keyboard

C source code containing
program and preprocessor
commands

 Prepro-
cessor

C source code file Source code file with the
preprocessing commands
properly sorted out

 Compiler Source code file with
preprocessing commands
sorted out

Relocatable object code

 Linker Relocatable object code
and the standard C
library functions

Executable code in
machine language

Figure 7.2

244 Let Us C

(c) Conditional Compilation
(d) Miscellaneous directives

Let us understand these features of preprocessor one by one.

Macro Expansion
Have a look at the following program.

#define UPPER 25
main()
{
 int i ;
 for (i = 1 ; i <= UPPER ; i++)
 printf ("\n%d", i) ;
}

In this program instead of writing 25 in the for loop we are writing
it in the form of UPPER, which has already been defined before
main() through the statement,

#define UPPER 25

This statement is called ‘macro definition’ or more commonly, just
a ‘macro’. What purpose does it serve? During preprocessing, the
preprocessor replaces every occurrence of UPPER in the program
with 25. Here is another example of macro definition.

#define PI 3.1415
main()
{
 float r = 6.25 ;
 float area ;

 area = PI * r * r ;
 printf ("\nArea of circle = %f", area) ;
}

Chapter 7: The C Preprocessor 245

UPPER and PI in the above programs are often called ‘macro
templates’, whereas, 25 and 3.1415 are called their corresponding
‘macro expansions’.

When we compile the program, before the source code passes to
the compiler it is examined by the C preprocessor for any macro
definitions. When it sees the #define directive, it goes through the
entire program in search of the macro templates; wherever it finds
one, it replaces the macro template with the appropriate macro
expansion. Only after this procedure has been completed is the
program handed over to the compiler.

In C programming it is customary to use capital letters for macro
template. This makes it easy for programmers to pick out all the
macro templates when reading through the program.

Note that a macro template and its macro expansion are separated
by blanks or tabs. A space between # and define is optional.
Remember that a macro definition is never to be terminated by a
semicolon.

And now a million dollar question... why use #define in the above
programs? What have we gained by substituting PI for 3.1415 in
our program? Probably, we have made the program easier to read.
Even though 3.1415 is such a common constant that it is easily
recognizable, there are many instances where a constant doesn’t
reveal its purpose so readily. For example, if the phrase “\x1B[2J”
causes the screen to clear. But which would you find easier to
understand in the middle of your program “\x1B[2J” or
“CLEARSCREEN”? Thus, we would use the macro definition

#define CLEARSCREEN "\x1B[2J"

Then wherever CLEARSCREEN appears in the program it would
automatically be replaced by “\x1B[2J” before compilation begins.

246 Let Us C

There is perhaps a more important reason for using macro
definition than mere readability. Suppose a constant like 3.1415
appears many times in your program. This value may have to be
changed some day to 3.141592. Ordinarily, you would need to go
through the program and manually change each occurrence of the
constant. However, if you have defined PI in a #define directive,
you only need to make one change, in the #define directive itself:

#define PI 3.141592

Beyond this the change will be made automatically to all
occurrences of PI before the beginning of compilation.

In short, it is nice to know that you would be able to change values
of a constant at all the places in the program by just making a
change in the #define directive. This convenience may not matter
for small programs shown above, but with large programs macro
definitions are almost indispensable.

But the same purpose could have been served had we used a
variable pi instead of a macro template PI. A variable could also
have provided a meaningful name for a constant and permitted one
change to effect many occurrences of the constant. It’s true that a
variable can be used in this way. Then, why not use it? For three
reasons it’s a bad idea.

Firstly, it is inefficient, since the compiler can generate faster and
more compact code for constants than it can for variables.
Secondly, using a variable for what is really a constant encourages
sloppy thinking and makes the program more difficult to
understand: if something never changes, it is hard to imagine it as
a variable. And thirdly, there is always a danger that the variable
may inadvertently get altered somewhere in the program. So it’s
no longer a constant that you think it is.

Chapter 7: The C Preprocessor 247

Thus, using #define can produce more efficient and more easily
understandable programs. This directive is used extensively by C
programmers, as you will see in many programs in this book.

Following three examples show places where a #define directive is
popularly used by C programmers.

A #define directive is many a times used to define operators as
shown below.

#define AND &&
#define OR ||
main()
{
 int f = 1, x = 4, y = 90 ;

 if ((f < 5) AND (x <= 20 OR y <= 45))
 printf ("\nYour PC will always work fine...") ;
 else
 printf ("\nIn front of the maintenance man") ;
}

A #define directive could be used even to replace a condition, as
shown below.

#define AND &&
#define ARANGE (a > 25 AND a < 50)
main()
{
 int a = 30 ;

 if (ARANGE)
 printf ("within range") ;
 else
 printf ("out of range") ;
}

248 Let Us C

A #define directive could be used to replace even an entire C
statement. This is shown below.

#define FOUND printf ("The Yankee Doodle Virus") ;
main()
{
 char signature ;

 if (signature == 'Y')
 FOUND
 else
 printf ("Safe... as yet !") ;
}

Macros with Arguments

The macros that we have used so far are called simple macros.
Macros can have arguments, just as functions can. Here is an
example that illustrates this fact.

#define AREA(x) (3.14 * x * x)
main()
{
 float r1 = 6.25, r2 = 2.5, a ;

 a = AREA (r1) ;
 printf ("\nArea of circle = %f", a) ;
 a = AREA (r2) ;
 printf ("\nArea of circle = %f", a) ;
}

Here’s the output of the program...

Area of circle = 122.656250
Area of circle = 19.625000

Chapter 7: The C Preprocessor 249

In this program wherever the preprocessor finds the phrase
AREA(x) it expands it into the statement (3.14 * x * x).
However, that’s not all that it does. The x in the macro template
AREA(x) is an argument that matches the x in the macro
expansion (3.14 * x * x). The statement AREA(r1) in the
program causes the variable r1 to be substituted for x. Thus the
statement AREA(r1) is equivalent to:

(3.14 * r1 * r1)

After the above source code has passed through the preprocessor,
what the compiler gets to work on will be this:

main()
{
 float r1 = 6.25, r2 = 2.5, a ;

 a = 3.14 * r1 *r1 ;
 printf ("Area of circle = %f\n", a) ;
 a = 3.14 *r2 * r2 ;
 printf ("Area of circle = %f", a) ;
}

Here is another example of macros with arguments:

#define ISDIGIT(y) (y >= 48 && y <= 57)
main()
{
 char ch ;

 printf ("Enter any digit ") ;
 scanf ("%c", &ch) ;

 if (ISDIGIT (ch))
 printf ("\nYou entered a digit") ;
 else
 printf ("\nIllegal input") ;

250 Let Us C

}

Here are some important points to remember while writing macros
with arguments:

(a)

(b)

Be careful not to leave a blank between the macro template
and its argument while defining the macro. For example, there
should be no blank between AREA and (x) in the definition,
#define AREA(x) (3.14 * x * x)

If we were to write AREA (x) instead of AREA(x), the (x)
would become a part of macro expansion, which we certainly
don’t want. What would happen is, the template would be
expanded to

(r1) (3.14 * r1 * r1)

which won’t run. Not at all what we wanted.

The entire macro expansion should be enclosed within
parentheses. Here is an example of what would happen if we
fail to enclose the macro expansion within parentheses.

#define SQUARE(n) n * n
main()
{
 int j ;

 j = 64 / SQUARE (4) ;
 printf ("j = %d", j) ;
}

The output of the above program would be:

j = 64

whereas, what we expected was j = 4.

Chapter 7: The C Preprocessor 251

What went wrong? The macro was expanded into

j = 64 / 4 * 4 ;

which yielded 64.

(c)

(d)

Macros can be split into multiple lines, with a ‘\’ (back slash)
present at the end of each line. Following program shows how
we can define and use multiple line macros.

#define HLINE for (i = 0 ; i < 79 ; i++) \
 printf ("%c", 196) ;

#define VLINE(X, Y) {\
 gotoxy (X, Y) ; \
 printf ("%c", 179) ; \
 }
main()
{
 int i, y ;
 clrscr() ;

 gotoxy (1, 12) ;
 HLINE

 for (y = 1 ; y < 25 ; y++)
 VLINE (39, y) ;
}

This program draws a vertical and a horizontal line in the
center of the screen.

If for any reason you are unable to debug a macro then you
should view the expanded code of the program to see how the
macros are getting expanded. If your source code is present in
the file PR1.C then the expanded source code would be stored

252 Let Us C

in PR1.I. You need to generate this file at the command
prompt by saying:

cpp pr1.c

Here CPP stands for C PreProcessor. It generates the
expanded source code and stores it in a file called PR1.I. You
can now open this file and see the expanded source code.
Note that the file PR1.I gets generated in C:\TC\BIN
directory. The procedure for generating expanded source code
for compilers other than Turbo C/C++ might be a little
different.

Macros versus Functions

In the above example a macro was used to calculate the area of the
circle. As we know, even a function can be written to calculate the
area of the circle. Though macro calls are ‘like’ function calls, they
are not really the same things. Then what is the difference between
the two?

In a macro call the preprocessor replaces the macro template with
its macro expansion, in a stupid, unthinking, literal way. As
against this, in a function call the control is passed to a function
along with certain arguments, some calculations are performed in
the function and a useful value is returned back from the function.

This brings us to a question: when is it best to use macros with
arguments and when is it better to use a function? Usually macros
make the program run faster but increase the program size,
whereas functions make the program smaller and compact.

If we use a macro hundred times in a program, the macro
expansion goes into our source code at hundred different places,
thus increasing the program size. On the other hand, if a function
is used, then even if it is called from hundred different places in

Chapter 7: The C Preprocessor 253

the program, it would take the same amount of space in the
program.

But passing arguments to a function and getting back the returned
value does take time and would therefore slow down the program.
This gets avoided with macros since they have already been
expanded and placed in the source code before compilation.

Moral of the story is—if the macro is simple and sweet like in our
examples, it makes nice shorthand and avoids the overheads
associated with function calls. On the other hand, if we have a
fairly large macro and it is used fairly often, perhaps we ought to
replace it with a function.

File Inclusion
The second preprocessor directive we’ll explore in this chapter is
file inclusion. This directive causes one file to be included in
another. The preprocessor command for file inclusion looks like
this:

#include "filename"

and it simply causes the entire contents of filename to be inserted
into the source code at that point in the program. Of course this
presumes that the file being included is existing. When and why
this feature is used? It can be used in two cases:

(a) If we have a very large program, the code is best divided into
several different files, each containing a set of related
functions. It is a good programming practice to keep different
sections of a large program separate. These files are
#included at the beginning of main program file.

(b) There are some functions and some macro definitions that we
need almost in all programs that we write. These commonly

254 Let Us C

needed functions and macro definitions can be stored in a file,
and that file can be included in every program we write,
which would add all the statements in this file to our program
as if we have typed them in.

It is common for the files that are to be included to have a .h
extension. This extension stands for ‘header file’, possibly because
it contains statements which when included go to the head of your
program. The prototypes of all the library functions are grouped
into different categories and then stored in different header files.
For example prototypes of all mathematics related functions are
stored in the header file ‘math.h’, prototypes of console
input/output functions are stored in the header file ‘conio.h’, and
so on.

Actually there exist two ways to write #include statement. These
are:

#include "filename"
#include <filename>

The meaning of each of these forms is given below:

#include "goto.c" This command would look for the file goto.c
in the current directory as well as the
specified list of directories as mentioned in
the include search path that might have been
set up.

#include <goto.c> This command would look for the file goto.c

in the specified list of directories only.

The include search path is nothing but a list of directories that
would be searched for the file being included. Different C
compilers let you set the search path in different manners. If you
are using Turbo C/C++ compiler then the search path can be set up
by selecting ‘Directories’ from the ‘Options’ menu. On doing this

Chapter 7: The C Preprocessor 255

a dialog box appears. In this dialog box against ‘Include
Directories’ we can specify the search path. We can also specify
multiple include paths separated by ‘;’ (semicolon) as shown
below:

c:\tc\lib ; c:\mylib ; d:\libfiles

The path can contain maximum of 127 characters. Both relative
and absolute paths are valid. For example ‘..\dir\incfiles’ is a valid
path.

Conditional Compilation
We can, if we want, have the compiler skip over part of a source
code by inserting the preprocessing commands #ifdef and #endif,
which have the general form:

#ifdef macroname
 statement 1 ;
 statement 2 ;
 statement 3 ;
#endif

If macroname has been #defined, the block of code will be
processed as usual; otherwise not.

Where would #ifdef be useful? When would you like to compile
only a part of your program? In three cases:

(a) To “comment out” obsolete lines of code. It often happens
that a program is changed at the last minute to satisfy a client.
This involves rewriting some part of source code to the
client’s satisfaction and deleting the old code. But veteran
programmers are familiar with the clients who change their
mind and want the old code back again just the way it was.

256 Let Us C

Now you would definitely not like to retype the deleted code
again.

One solution in such a situation is to put the old code within a
pair of /* */ combination. But we might have already
written a comment in the code that we are about to “comment
out”. This would mean we end up with nested comments.
Obviously, this solution won’t work since we can’t nest
comments in C.

Therefore the solution is to use conditional compilation as
shown below.

main()
{
 #ifdef OKAY
 statement 1 ;
 statement 2 ; /* detects virus */
 statement 3 ;
 statement 4 ; /* specific to stone virus */
 #endif

 statement 5 ;
 statement 6 ;
 statement 7 ;
}

Here, statements 1, 2, 3 and 4 would get compiled only if the
macro OKAY has been defined, and we have purposefully
omitted the definition of the macro OKAY. At a later date, if
we want that these statements should also get compiled all
that we are required to do is to delete the #ifdef and #endif
statements.

(b) A more sophisticated use of #ifdef has to do with making the
programs portable, i.e. to make them work on two totally
different computers. Suppose an organization has two

Chapter 7: The C Preprocessor 257

different types of computers and you are expected to write a
program that works on both the machines. You can do so by
isolating the lines of code that must be different for each
machine by marking them off with #ifdef. For example:

main()
{
 #ifdef INTEL
 code suitable for a Intel PC
 #else
 code suitable for a Motorola PC
 #endif
 code common to both the computers
}

When you compile this program it would compile only the
code suitable for a Intel PC and the common code. This is
because the macro INTEL has not been defined. Note that the
working of #ifdef - #else - #endif is similar to the ordinary if -
else control instruction of C.

If you want to run your program on a Motorola PC, just add a
statement at the top saying,

#define INTEL

Sometimes, instead of #ifdef the #ifndef directive is used.
The #ifndef (which means ‘if not defined’) works exactly
opposite to #ifdef. The above example if written using
#ifndef, would look like this:

main()
{
 #ifndef INTEL
 code suitable for a Intel PC
 #else
 code suitable for a Motorola PC

258 Let Us C

 #endif
 code common to both the computers
}

(c) Suppose a function myfunc() is defined in a file ‘myfile.h’
which is #included in a file ‘myfile1.h’. Now in your program
file if you #include both ‘myfile.h’ and ‘myfile1.h’ the
compiler flashes an error ‘Multiple declaration for myfunc’.
This is because the same file ‘myfile.h’ gets included twice.
To avoid this we can write following code in the header file.

/* myfile.h */
#ifndef __myfile_h
 #define __myfile_h

 myfunc()
 {
 /* some code */
 }

#endif

First time the file ‘myfile.h’ gets included the preprocessor
checks whether a macro called __myfile_h has been defined
or not. If it has not been then it gets defined and the rest of the
code gets included. Next time we attempt to include the same
file, the inclusion is prevented since __myfile_h already
stands defined. Note that there is nothing special about
__myfile_h. In its place we can use any other macro as well.

#if and #elif Directives
The #if directive can be used to test whether an expression
evaluates to a nonzero value or not. If the result of the expression
is nonzero, then subsequent lines upto a #else, #elif or #endif are
compiled, otherwise they are skipped.

Chapter 7: The C Preprocessor 259

A simple example of #if directive is shown below:

main()
{
 #if TEST <= 5
 statement 1 ;
 statement 2 ;
 statement 3 ;
 #else
 statement 4 ;
 statement 5 ;
 statement 6 ;
 #endif
}

If the expression, TEST <= 5 evaluates to true then statements 1, 2
and 3 are compiled otherwise statements 4, 5 and 6 are compiled.
In place of the expression TEST <= 5 other expressions like
(LEVEL == HIGH || LEVEL == LOW) or ADAPTER ==
CGA can also be used.

If we so desire we can have nested conditional compilation
directives. An example that uses such directives is shown below.

#if ADAPTER == VGA
 code for video graphics array
#else
 #if ADAPTER == SVGA
 code for super video graphics array
 #else
 code for extended graphics adapter
 #endif
#endif

The above program segment can be made more compact by using
another conditional compilation directive called #elif. The same
program using this directive can be rewritten as shown below.

260 Let Us C

Observe that by using the #elif directives the number of #endifs
used in the program get reduced.

#if ADAPTER == VGA
 code for video graphics array
#elif ADAPTER == SVGA
 code for super video graphics array
#else
 code for extended graphics adapter
#endif

Miscellaneous Directives
There are two more preprocessor directives available, though they
are not very commonly used. They are:

(a) #undef
(b) #pragma

#undef Directive

On some occasions it may be desirable to cause a defined name to
become ‘undefined’. This can be accomplished by means of the
#undef directive. In order to undefine a macro that has been earlier
#defined, the directive,

#undef macro template

can be used. Thus the statement,

#undef PENTIUM

would cause the definition of PENTIUM to be removed from the
system. All subsequent #ifdef PENTIUM statements would
evaluate to false. In practice seldom are you required to undefine a
macro, but for some reason if you are required to, then you know
that there is something to fall back upon.

Chapter 7: The C Preprocessor 261

#pragma Directive

This directive is another special-purpose directive that you can use
to turn on or off certain features. Pragmas vary from one compiler
to another. There are certain pragmas available with Microsoft C
compiler that deal with formatting source listings and placing
comments in the object file generated by the compiler. Turbo
C/C++ compiler has got a pragma that allows you to suppress
warnings generated by the compiler. Some of these pragmas are
discussed below.

(a) #pragma startup and #pragma exit: These directives allow
us to specify functions that are called upon program startup
(before main()) or program exit (just before the program
terminates). Their usage is as follows:

void fun1() ;
void fun2() ;

#pragma startup fun1
#pragma exit fun2

main()
{
 printf ("\nInside maim") ;
}

void fun1()
{
 printf ("\nInside fun1") ;
}

void fun2()
{
 printf ("\nInside fun2") ;
}

262 Let Us C

And here is the output of the program.

Inside fun1
Inside main
Inside fun2

Note that the functions fun1() and fun2() should neither
receive nor return any value. If we want two functions to get
executed at startup then their pragmas should be defined in
the reverse order in which you want to get them called.

(b) #pragma warn: This directive tells the compiler whether or
not we want to suppress a specific warning. Usage of this
pragma is shown below.

#pragma warn –rvl /* return value */
#pragma warn –par /* parameter not used */
#pragma warn –rch /* unreachable code */

int f1()
{
 int a = 5 ;
}

void f2 (int x)
{
 printf ("\nInside f2") ;
}

int f3()
{
 int x = 6 ;
 return x ;
 x++ ;
}

void main()

Chapter 7: The C Preprocessor 263

{
 f1() ;
 f2 (7) ;
 f3() ;
}

If you go through the program you can notice three problems
immediately. These are:

(a) Though promised, f1() doesn’t return a value.

(b) The parameter x that is passed to f2() is not being used
anywhere in f2().

(c) The control can never reach x++ in f3().

If we compile the program we should expect warnings
indicating the above problems. However, this does not happen
since we have suppressed the warnings using the #pragma
directives. If we replace the ‘–’ sign with a ‘+’ then these
warnings would be flashed on compilation. Though it is a bad
practice to suppress warnings, at times it becomes useful to
suppress them. For example, if you have written a huge
program and are trying to compile it, then to begin with you
are more interested in locating the errors, rather than the
warnings. At such times you may suppress the warnings.
Once you have located all errors, then you may turn on the
warnings and sort them out.

Summary
(a) The preprocessor directives enable the programmer to write

programs that are easy to develop, read, modify and transport
to a different computer system.

264 Let Us C

(b)

(c)

We can make use of various preprocessor directives such as
#define, #include, #ifdef - #else - #endif, #if and #elif in our
program.
The directives like #undef and #pragma are also useful
although they are seldom used.

Exercise

[A] Answer the following:

(a) What is a preprocessor directive

1. a message from compiler to the programmer
2. a message from compiler to the linker
3. a message from programmer to the preprocessor
4. a message from programmer to the microprocessor

(b) Which of the following are correctly formed #define
statements:

#define INCH PER FEET 12
#define SQR (X) (X * X)
#define SQR(X) X * X
#define SQR(X) (X * X)

(c) State True or False:

1. A macro must always be written in capital letters.

2. A macro should always be accomodated in a single line.

3. After preprocessing when the program is sent for
compilation the macros are removed from the expanded
source code.

4. Macros with arguments are not allowed.

5. Nested macros are allowed.

6. In a macro call the control is passed to the macro.

Chapter 7: The C Preprocessor 265

(d) How many #include directives can be there in a given
program file?

(e) What is the difference between the following two #include
directives:

#include "conio.h"
#include <conio.h>

(f) A header file is:

1. A file that contains standard library functions
2. A file that contains definitions and macros
3. A file that contains user - defined functions
4. A file that is present in current working directory

(g) Which of the following is not a preprocessor directive

1. #if
2. #elseif
3. #undef
4. #pragma

(h) All macro substitutions in a program are done

1. Before compilation of the program
2. After compilation
3. During execution
4. None of the above

(i) In a program the statement:

 #include "filename"

is replaced by the contents of the file “filename”

1. Before compilation
2. After Compilation
3. During execution
4. None of the above

266 Let Us C

[B] What would be the output of the following program:

(a) main()

{
 int i = 2 ;
 #ifdef DEF
 i *= i ;
 #else
 printf ("\n%d", i) ;
 #endif
}

(b) #define PRODUCT(x) (x * x)
main()
{
 int i = 3, j ;
 j = PRODUCT(i + 1) ;
 printf ("\n%d", j) ;
}

(c) #define PRODUCT(x) (x * x)
main()
{
 int i = 3, j, k ;
 j = PRODUCT(i++) ;
 k = PRODUCT (++i) ;

 printf ("\n%d %d", j, k) ;
}

(d) # define SEMI ;
main()
{
 int p = 3 SEMI ;
 printf ("%d", p) SEMI
}

Chapter 7: The C Preprocessor 267

[C] Attempt the following:

(a) Write down macro definitions for the following:

1. To test whether a character entered is a small case letter or

not.
2. To test whether a character entered is a upper case letter or

not.
3. To test whether a character is an alphabet or not. Make

use of the macros you defined in (1) and (2) above.
4. To obtain the bigger of two numbers.

(b) Write macro definitions with arguments for calculation of
area and perimeter of a triangle, a square and a circle. Store
these macro definitions in a file called “areaperi.h”. Include
this file in your program, and call the macro definitions for
calculating area and perimeter for different squares, triangles
and circles.

(c) Write down macro definitions for the following:

1. To find arithmetic mean of two numbers.
2. To find absolute value of a number.
3. To convert a uppercase alphabet to lowercase.
4. To obtain the bigger of two numbers.

(d) Write macro definitions with arguments for calculation of
Simple Interest and Amount. Store these macro definitions in
a file called “interest.h”. Include this file in your program, and
use the macro definitions for calculating simple interest and
amount.

268 Let Us C

8 Arrays

• What are Arrays

A Simple Program Using Array
• More on Arrays

Array Initialisation
Bounds Checking
Passing Array Elements to a Function

• Pointers and Arrays
Passing an Entire Array to a Function
The Real Thing

• Two Dimensional Arrays
Initialising a 2-Dimensional Array
Memory Map of a 2-Dimensional Array
Pointers and 2-Dimensional Arrays
Pointer to an Array
Passing 2-D Array to a Function

• Array of Pointers
• Three-Dimensional Array
• Summary
• Exercise

269

270 Let Us C

he C language provides a capability that enables the user to
design a set of similar data types, called array. This chapter
describes how arrays can be created and manipulated in C. T

We should note that, in many C books and courses arrays and
pointers are taught separately. I feel it is worthwhile to deal with
these topics together. This is because pointers and arrays are so
closely related that discussing arrays without discussing pointers
would make the discussion incomplete and wanting. In fact all
arrays make use of pointers internally. Hence it is all too relevant
to study them together rather than as isolated topics.

What are Arrays
For understanding the arrays properly, let us consider the
following program:

main()
{
 int x ;
 x = 5 ;
 x = 10 ;
 printf ("\nx = %d", x) ;
}

No doubt, this program will print the value of x as 10. Why so?
Because when a value 10 is assigned to x, the earlier value of x,
i.e. 5, is lost. Thus, ordinary variables (the ones which we have
used so far) are capable of holding only one value at a time (as in
the above example). However, there are situations in which we
would want to store more than one value at a time in a single
variable.

For example, suppose we wish to arrange the percentage marks
obtained by 100 students in ascending order. In such a case we
have two options to store these marks in memory:

Chapter 8: Arrays 271

(a)

(b)

Construct 100 variables to store percentage marks obtained by
100 different students, i.e. each variable containing one
student’s marks.

Construct one variable (called array or subscripted variable)
capable of storing or holding all the hundred values.

Obviously, the second alternative is better. A simple reason for
this is, it would be much easier to handle one variable than
handling 100 different variables. Moreover, there are certain logics
that cannot be dealt with, without the use of an array. Now a
formal definition of an array—An array is a collective name given
to a group of ‘similar quantities’. These similar quantities could be
percentage marks of 100 students, or salaries of 300 employees, or
ages of 50 employees. What is important is that the quantities must
be ‘similar’. Each member in the group is referred to by its
position in the group. For example, assume the following group of
numbers, which represent percentage marks obtained by five
students.

per = { 48, 88, 34, 23, 96 }

If we want to refer to the second number of the group, the usual
notation used is per2. Similarly, the fourth number of the group is
referred as per4. However, in C, the fourth number is referred as
per[3]. This is because in C the counting of elements begins with 0
and not with 1. Thus, in this example per[3] refers to 23 and
per[4] refers to 96. In general, the notation would be per[i],
where, i can take a value 0, 1, 2, 3, or 4, depending on the position
of the element being referred. Here per is the subscripted variable
(array), whereas i is its subscript.

Thus, an array is a collection of similar elements. These similar
elements could be all ints, or all floats, or all chars, etc. Usually,
the array of characters is called a ‘string’, whereas an array of ints
or floats is called simply an array. Remember that all elements of

272 Let Us C

any given array must be of the same type. i.e. we cannot have an
array of 10 numbers, of which 5 are ints and 5 are floats.

A Simple Program Using Array

Let us try to write a program to find average marks obtained by a
class of 30 students in a test.

main()
{
 int avg, sum = 0 ;
 int i ;
 int marks[30] ; /* array declaration */

 for (i = 0 ; i <= 29 ; i++)
 {
 printf ("\nEnter marks ") ;
 scanf ("%d", &marks[i]) ; /* store data in array */
 }

 for (i = 0 ; i <= 29 ; i++)
 sum = sum + marks[i] ; /* read data from an array*/

 avg = sum / 30 ;
 printf ("\nAverage marks = %d", avg) ;
}

There is a lot of new material in this program, so let us take it apart
slowly.

Array Declaration

To begin with, like other variables an array needs to be declared so
that the compiler will know what kind of an array and how large
an array we want. In our program we have done this with the
statement:

Chapter 8: Arrays 273

int marks[30] ;

Here, int specifies the type of the variable, just as it does with
ordinary variables and the word marks specifies the name of the
variable. The [30] however is new. The number 30 tells how many
elements of the type int will be in our array. This number is often
called the ‘dimension’ of the array. The bracket ([]) tells the
compiler that we are dealing with an array.

Accessing Elements of an Array

Once an array is declared, let us see how individual elements in the
array can be referred. This is done with subscript, the number in
the brackets following the array name. This number specifies the
element’s position in the array. All the array elements are
numbered, starting with 0. Thus, marks[2] is not the second
element of the array, but the third. In our program we are using the
variable i as a subscript to refer to various elements of the array.
This variable can take different values and hence can refer to the
different elements in the array in turn. This ability to use variables
as subscripts is what makes arrays so useful.

Entering Data into an Array

Here is the section of code that places data into an array:

for (i = 0 ; i <= 29 ; i++)
{
 printf ("\nEnter marks ") ;
 scanf ("%d", &marks[i]) ;
}

The for loop causes the process of asking for and receiving a
student’s marks from the user to be repeated 30 times. The first
time through the loop, i has a value 0, so the scanf() function will
cause the value typed to be stored in the array element marks[0],
the first element of the array. This process will be repeated until i

274 Let Us C

becomes 29. This is last time through the loop, which is a good
thing, because there is no array element like marks[30].

In scanf() function, we have used the “address of” operator (&) on
the element marks[i] of the array, just as we have used it earlier
on other variables (&rate, for example). In so doing, we are
passing the address of this particular array element to the scanf()
function, rather than its value; which is what scanf() requires.

Reading Data from an Array

The balance of the program reads the data back out of the array
and uses it to calculate the average. The for loop is much the same,
but now the body of the loop causes each student’s marks to be
added to a running total stored in a variable called sum. When all
the marks have been added up, the result is divided by 30, the
number of students, to get the average.

for (i = 0 ; i <= 29 ; i++)
 sum = sum + marks[i] ;

avg = sum / 30 ;
printf ("\nAverage marks = %d", avg) ;

To fix our ideas, let us revise whatever we have learnt about
arrays:

(a)
(b)

(c)
(d)

(e)

An array is a collection of similar elements.
The first element in the array is numbered 0, so the last
element is 1 less than the size of the array.
An array is also known as a subscripted variable.
Before using an array its type and dimension must be
declared.
However big an array its elements are always stored in
contiguous memory locations. This is a very important point
which we would discuss in more detail later on.

Chapter 8: Arrays 275

More on Arrays
Array is a very popular data type with C programmers. This is
because of the convenience with which arrays lend themselves to
programming. The features which make arrays so convenient to
program would be discussed below, along with the possible pitfalls
in using them.

Array Initialisation

So far we have used arrays that did not have any values in them to
begin with. We managed to store values in them during program
execution. Let us now see how to initialize an array while
declaring it. Following are a few examples that demonstrate this.

int num[6] = { 2, 4, 12, 5, 45, 5 } ;
int n[] = { 2, 4, 12, 5, 45, 5 } ;
float press[] = { 12.3, 34.2 -23.4, -11.3 } ;

Note the following points carefully:

(a) Till the array elements are not given any specific values, they
are supposed to contain garbage values.

(b) If the array is initialised where it is declared, mentioning the

dimension of the array is optional as in the 2nd example above.

Array Elements in Memory

Consider the following array declaration:

int arr[8] ;

What happens in memory when we make this declaration? 16
bytes get immediately reserved in memory, 2 bytes each for the 8
integers (under Windows/Linux the array would occupy 32 bytes

276 Let Us C

as each integer would occupy 4 bytes). And since the array is not
being initialized, all eight values present in it would be garbage
values. This so happens because the storage class of this array is
assumed to be auto. If the storage class is declared to be static
then all the array elements would have a default initial value as
zero. Whatever be the initial values, all the array elements would
always be present in contiguous memory locations. This
arrangement of array elements in memory is shown in Figure 8.1.

65522 65520655186551665514655126551065508

9077 23 34612 34 66 -45

Figure 8.1

Bounds Checking

In C there is no check to see if the subscript used for an array
exceeds the size of the array. Data entered with a subscript
exceeding the array size will simply be placed in memory outside
the array; probably on top of other data, or on the program itself.
This will lead to unpredictable results, to say the least, and there
will be no error message to warn you that you are going beyond
the array size. In some cases the computer may just hang. Thus,
the following program may turn out to be suicidal.

main()
{
 int num[40], i ;

 for (i = 0 ; i <= 100 ; i++)
 num[i] = i ;
}

Chapter 8: Arrays 277

Thus, to see to it that we do not reach beyond the array size is
entirely the programmer’s botheration and not the compiler’s.

Passing Array Elements to a Function

Array elements can be passed to a function by calling the function
by value, or by reference. In the call by value we pass values of
array elements to the function, whereas in the call by reference we
pass addresses of array elements to the function. These two calls
are illustrated below:

/* Demonstration of call by value */
main()
{
 int i ;
 int marks[] = { 55, 65, 75, 56, 78, 78, 90 } ;

 for (i = 0 ; i <= 6 ; i++)
 display (marks[i]) ;
}

display (int m)
{
 printf ("%d ", m) ;
}

And here’s the output...

55 65 75 56 78 78 90

Here, we are passing an individual array element at a time to the
function display() and getting it printed in the function display().
Note that since at a time only one element is being passed, this
element is collected in an ordinary integer variable m, in the
function display().

And now the call by reference.

278 Let Us C

/* Demonstration of call by reference */
main()
{
 int i ;
 int marks[] = { 55, 65, 75, 56, 78, 78, 90 } ;

 for (i = 0 ; i <= 6 ; i++)
 disp (&marks[i]) ;
}

disp (int *n)
{
 printf ("%d ", *n) ;
}

And here’s the output...

55 65 75 56 78 78 90

Here, we are passing addresses of individual array elements to the
function display(). Hence, the variable in which this address is
collected (n) is declared as a pointer variable. And since n contains
the address of array element, to print out the array element we are
using the ‘value at address’ operator (*).

Read the following program carefully. The purpose of the function
disp() is just to display the array elements on the screen. The
program is only partly complete. You are required to write the
function show() on your own. Try your hand at it.

main()
{
 int i ;
 int marks[] = { 55, 65, 75, 56, 78, 78, 90 } ;

 for (i = 0 ; i <= 6 ; i++)
 disp (&marks[i]) ;

Chapter 8: Arrays 279

}

disp (int *n)
{
 show (&n) ;
}

Pointers and Arrays
To be able to see what pointers have got to do with arrays, let us
first learn some pointer arithmetic. Consider the following
example:

main()
{
 int i = 3, *x ;
 float j = 1.5, *y ;
 char k = 'c', *z ;

 printf ("\nValue of i = %d", i) ;
 printf ("\nValue of j = %f", j) ;
 printf ("\nValue of k = %c", k) ;
 x = &i ;
 y = &j ;
 z = &k ;
 printf ("\nOriginal address in x = %u", x) ;
 printf ("\nOriginal address in y = %u", y) ;
 printf ("\nOriginal address in z = %u", z) ;
 x++ ;
 y++ ;
 z++ ;
 printf ("\nNew address in x = %u", x) ;
 printf ("\nNew address in y = %u", y) ;
 printf ("\nNew address in z = %u", z) ;
}

Here is the output of the program.

280 Let Us C

Value of i = 3
Value of j = 1.500000
Value of k = c
Original address in x = 65524
Original address in y = 65520
Original address in z = 65519
New address in x = 65526
New address in y = 65524
New address in z = 65520

Observe the last three lines of the output. 65526 is original value in
x plus 2, 65524 is original value in y plus 4, and 65520 is original
value in z plus 1. This so happens because every time a pointer is
incremented it points to the immediately next location of its type.
That is why, when the integer pointer x is incremented, it points to
an address two locations after the current location, since an int is
always 2 bytes long (under Windows/Linux since int is 4 bytes
long, new value of x would be 65528). Similarly, y points to an
address 4 locations after the current location and z points 1
location after the current location. This is a very important result
and can be effectively used while passing the entire array to a
function.

The way a pointer can be incremented, it can be decremented as
well, to point to earlier locations. Thus, the following operations
can be performed on a pointer:

(a) Addition of a number to a pointer. For example,

int i = 4, *j, *k ;
j = &i ;
j = j + 1 ;
j = j + 9 ;
k = j + 3 ;

(b) Subtraction of a number from a pointer. For example,

Chapter 8: Arrays 281

int i = 4, *j, *k ;
j = &i ;
j = j - 2 ;
j = j - 5 ;
k = j - 6 ;

(c) Subtraction of one pointer from another.

One pointer variable can be subtracted from another provided
both variables point to elements of the same array. The
resulting value indicates the number of bytes separating the
corresponding array elements. This is illustrated in the
following program.

main()
{
 int arr[] = { 10, 20, 30, 45, 67, 56, 74 } ;
 int *i, *j ;

 i = &arr[1] ;
 j = &arr[5] ;
 printf ("%d %d", j - i, *j - *i) ;
}

Here i and j have been declared as integer pointers holding
addresses of first and fifth element of the array respectively.

Suppose the array begins at location 65502, then the elements
arr[1] and arr[5] would be present at locations 65504 and
65512 respectively, since each integer in the array occupies
two bytes in memory. The expression j - i would print a value
4 and not 8. This is because j and i are pointing to locations
that are 4 integers apart. What would be the result of the
expression *j - *i? 36, since *j and *i return the values
present at addresses contained in the pointers j and i.

(d) Comparison of two pointer variables

282 Let Us C

Pointer variables can be compared provided both variables
point to objects of the same data type. Such comparisons can
be useful when both pointer variables point to elements of the
same array. The comparison can test for either equality or
inequality. Moreover, a pointer variable can be compared with
zero (usually expressed as NULL). The following program
illustrates how the comparison is carried out.

main()
{
 int arr[] = { 10, 20, 36, 72, 45, 36 } ;
 int *j, *k ;

 j = &arr [4] ;
 k = (arr + 4) ;

 if (j == k)
 printf ("The two pointers point to the same location") ;
 else
 printf ("The two pointers do not point to the same location") ;
}

A word of caution! Do not attempt the following operations on
pointers... they would never work out.

(a) Addition of two pointers
(b) Multiplication of a pointer with a constant
(c) Division of a pointer with a constant

Now we will try to correlate the following two facts, which we
have learnt above:

(a) Array elements are always stored in contiguous memory
locations.

(b) A pointer when incremented always points to an immediately
next location of its type.

Chapter 8: Arrays 283

Suppose we have an array num[] = { 24, 34, 12, 44, 56, 17 }. The
following figure shows how this array is located in memory.

65522 65520 65518 65516 65514 65512

17 56 44 12 34 24

Figure 8.2

Here is a program that prints out the memory locations in which
the elements of this array are stored.

main()
{
 int num[] = { 24, 34, 12, 44, 56, 17 } ;
 int i ;

 for (i = 0 ; i <= 5 ; i++)
 {
 printf ("\nelement no. %d ", i) ;
 printf ("address = %u", &num[i]) ;
 }
}

The output of this program would look like this:

element no. 0 address = 65512
element no. 1 address = 65514
element no. 2 address = 65516
element no. 3 address = 65518
element no. 4 address = 65520
element no. 5 address = 65522

Note that the array elements are stored in contiguous memory
locations, each element occupying two bytes, since it is an integer

284 Let Us C

array. When you run this program, you may get different
addresses, but what is certain is that each subsequent address
would be 2 bytes (4 bytes under Windows/Linux) greater than its
immediate predecessor.

Our next two programs show ways in which we can access the
elements of this array.

main()
{
 int num[] = { 24, 34, 12, 44, 56, 17 } ;
 int i ;

 for (i = 0 ; i <= 5 ; i++)
 {
 printf ("\naddress = %u ", &num[i]) ;
 printf ("element = %d", num[i]) ;
 }
}

The output of this program would be:

address = 65512 element = 24
address = 65514 element = 34
address = 65516 element = 12
address = 65518 element = 44
address = 65520 element = 56
address = 65522 element = 17

This method of accessing array elements by using subscripted
variables is already known to us. This method has in fact been
given here for easy comparison with the next method, which
accesses the array elements using pointers.

main()
{
 int num[] = { 24, 34, 12, 44, 56, 17 } ;

Chapter 8: Arrays 285

 int i, *j ;

 j = &num[0] ; /* assign address of zeroth element */

 for (i = 0 ; i <= 5 ; i++)
 {
 printf ("\naddress = %u ", j) ;
 printf ("element = %d", *j) ;
 j++ ; /* increment pointer to point to next location */
 }
}

The output of this program would be:

address = 65512 element = 24
address = 65514 element = 34
address = 65516 element = 12
address = 65518 element = 44
address = 65520 element = 56
address = 65522 element = 17

In this program, to begin with we have collected the base address
of the array (address of the 0th element) in the variable j using the
statement,

j = &num[0] ; /* assigns address 65512 to j */

When we are inside the loop for the first time, j contains the
address 65512, and the value at this address is 24. These are
printed using the statements,

printf ("\naddress = %u ", j) ;
printf ("element = %d", *j) ;

On incrementing j it points to the next memory location of its type
(that is location no. 65514). But location no. 65514 contains the
second element of the array, therefore when the printf()

286 Let Us C

statements are executed for the second time they print out the
second element of the array and its address (i.e. 34 and 65514)...
and so on till the last element of the array has been printed.

Obviously, a question arises as to which of the above two methods
should be used when? Accessing array elements by pointers is
always faster than accessing them by subscripts. However, from
the point of view of convenience in programming we should
observe the following:

Array elements should be accessed using pointers if the elements
are to be accessed in a fixed order, say from beginning to end, or
from end to beginning, or every alternate element or any such
definite logic.

Instead, it would be easier to access the elements using a subscript
if there is no fixed logic in accessing the elements. However, in
this case also, accessing the elements by pointers would work
faster than subscripts.

Passing an Entire Array to a Function

In the previous section we saw two programs—one in which we
passed individual elements of an array to a function, and another in
which we passed addresses of individual elements to a function.
Let us now see how to pass an entire array to a function rather than
its individual elements. Consider the following example:

/* Demonstration of passing an entire array to a function */
main()
{
 int num[] = { 24, 34, 12, 44, 56, 17 } ;
 dislpay (&num[0], 6) ;
}

display (int *j, int n)
{

Chapter 8: Arrays 287

 int i ;

 for (i = 0 ; i <= n - 1 ; i++)
 {
 printf ("\nelement = %d", *j) ;
 j++ ; /* increment pointer to point to next element */
 }
}

Here, the display() function is used to print out the array
elements. Note that the address of the zeroth element is being
passed to the display() function. The for loop is same as the one
used in the earlier program to access the array elements using
pointers. Thus, just passing the address of the zeroth element of the
array to a function is as good as passing the entire array to the
function. It is also necessary to pass the total number of elements
in the array, otherwise the display() function would not know
when to terminate the for loop. Note that the address of the zeroth
element (many a times called the base address) can also be passed
by just passing the name of the array. Thus, the following two
function calls are same:

display (&num[0], 6) ;
display (num, 6) ;

The Real Thing

If you have grasped the concept of storage of array elements in
memory and the arithmetic of pointers, here is some real food for
thought. Once again consider the following array.

56 17 12 44 34 24

65522 65520 65518 65514 65516 65512

Figure 8.3

288 Let Us C

This is how we would declare the above array in C,

int num[] = { 24, 34, 12, 44, 56, 17 } ;

We also know that on mentioning the name of the array we get its
base address. Thus, by saying *num we would be able to refer to
the zeroth element of the array, that is, 24. One can easily see that
*num and *(num + 0) both refer to 24.

Similarly, by saying *(num + 1) we can refer the first element of
the array, that is, 34. In fact, this is what the C compiler does
internally. When we say, num[i], the C compiler internally
converts it to *(num + i). This means that all the following
notations are same:

num[i]
*(num + i)
*(i + num)
i[num]

And here is a program to prove my point.

/* Accessing array elements in different ways */
main()
{
 int num[] = { 24, 34, 12, 44, 56, 17 } ;
 int i ;

 for (i = 0 ; i <= 5 ; i++)
 {
 printf ("\naddress = %u ", &num[i]) ;
 printf ("element = %d %d ", num[i], *(num + i)) ;
 printf ("%d %d", *(i + num), i[num]) ;
 }
}

The output of this program would be:

Chapter 8: Arrays 289

address = 65512 element = 24 24 24 24
address = 65514 element = 34 34 34 34
address = 65516 element = 12 12 12 12
address = 65518 element = 44 44 44 44
address = 65520 element = 56 56 56 56
address = 65522 element = 17 17 17 17

Two Dimensional Arrays
So far we have explored arrays with only one dimension. It is also
possible for arrays to have two or more dimensions. The two-
dimensional array is also called a matrix.

Here is a sample program that stores roll number and marks
obtained by a student side by side in a matrix.

main()
{
 int stud[4][2] ;
 int i, j ;

 for (i = 0 ; i <= 3 ; i++)
 {
 printf ("\n Enter roll no. and marks") ;
 scanf ("%d %d", &stud[i][0], &stud[i][1]) ;
 }

 for (i = 0 ; i <= 3 ; i++)
 printf ("\n%d %d", stud[i][0], stud[i][1]) ;
}
There are two parts to the program—in the first part through a for
loop we read in the values of roll no. and marks, whereas, in
second part through another for loop we print out these values.

Look at the scanf() statement used in the first for loop:

scanf ("%d %d", &stud[i][0], &stud[i][1]) ;

290 Let Us C

In stud[i][0] and stud[i][1] the first subscript of the variable stud,
is row number which changes for every student. The second
subscript tells which of the two columns are we talking about—the
zeroth column which contains the roll no. or the first column
which contains the marks. Remember the counting of rows and
columns begin with zero. The complete array arrangement is
shown below.

 col. no. 0 col. no. 1

 row no. 0 1234 56

 row no. 1 1212 33

 row no. 2 1434 80

 row no. 3 1312 78

Figure 8.4

Thus, 1234 is stored in stud[0][0], 56 is stored in stud[0][1] and
so on. The above arrangement highlights the fact that a two-
dimensional array is nothing but a collection of a number of one-
dimensional arrays placed one below the other.

In our sample program the array elements have been stored
rowwise and accessed rowwise. However, you can access the array
elements columnwise as well. Traditionally, the array elements are
being stored and accessed rowwise; therefore we would also stick
to the same strategy.

Initialising a 2-Dimensional Array

How do we initialize a two-dimensional array? As simple as this...

Chapter 8: Arrays 291

int stud[4][2] = {
 { 1234, 56 },
 { 1212, 33 },
 { 1434, 80 },
 { 1312, 78 }
 } ;

or even this would work...

int stud[4][2] = { 1234, 56, 1212, 33, 1434, 80, 1312, 78 } ;

of course with a corresponding loss in readability.

It is important to remember that while initializing a 2-D array it is
necessary to mention the second (column) dimension, whereas the
first dimension (row) is optional.

Thus the declarations,

int arr[2][3] = { 12, 34, 23, 45, 56, 45 } ;
int arr[][3] = { 12, 34, 23, 45, 56, 45 } ;

are perfectly acceptable,

whereas,

int arr[2][] = { 12, 34, 23, 45, 56, 45 } ;
int arr[][] = { 12, 34, 23, 45, 56, 45 } ;

would never work.

Memory Map of a 2-Dimensional Array

Let us reiterate the arrangement of array elements in a two-
dimensional array of students, which contains roll nos. in one
column and the marks in the other.

292 Let Us C

The array arrangement shown in Figure 8.4 is only conceptually
true. This is because memory doesn’t contain rows and columns.
In memory whether it is a one-dimensional or a two-dimensional
array the array elements are stored in one continuous chain. The
arrangement of array elements of a two-dimensional array in
memory is shown below:

s[3][1] s[3][0]s[2][1]s[2][0]s[1][1]s[1][0]s[0][0] s[0][1]

14341212

65522 65520 65518 65516 65514 65512 65510 65508

80 1312 78 33 56 1234

Figure 8.5

We can easily refer to the marks obtained by the third student
using the subscript notation as shown below:

printf ("Marks of third student = %d", stud[2][1]) ;

Can we not refer the same element using pointer notation, the way
we did in one-dimensional arrays? Answer is yes. Only the
procedure is slightly difficult to understand. So, read on...

Pointers and 2-Dimensional Arrays

The C language embodies an unusual but powerful capability—it
can treat parts of arrays as arrays. More specifically, each row of a
two-dimensional array can be thought of as a one-dimensional
array. This is a very important fact if we wish to access array
elements of a two-dimensional array using pointers.

Thus, the declaration,

int s[5][2] ;

Chapter 8: Arrays 293

can be thought of as setting up an array of 5 elements, each of
which is a one-dimensional array containing 2 integers. We refer
to an element of a one-dimensional array using a single subscript.
Similarly, if we can imagine s to be a one-dimensional array then
we can refer to its zeroth element as s[0], the next element as s[1]
and so on. More specifically, s[0] gives the address of the zeroth
one-dimensional array, s[1] gives the address of the first one-
dimensional array and so on. This fact can be demonstrated by the
following program.

/* Demo: 2-D array is an array of arrays */
main()
{
 int s[4][2] = {
 { 1234, 56 },
 { 1212, 33 },
 { 1434, 80 },
 { 1312, 78 }
 } ;
 int i ;

 for (i = 0 ; i <= 3 ; i++)
 printf ("\nAddress of %d th 1-D array = %u", i, s[i]) ;
}

And here is the output...

Address of 0 th 1-D array = 65508
Address of 1 th 1-D array = 65512
Address of 2 th 1-D array = 65516
Address of 3 th 1-D array = 65520

Let’s figure out how the program works. The compiler knows that
s is an array containing 4 one-dimensional arrays, each containing
2 integers. Each one-dimensional array occupies 4 bytes (two
bytes for each integer). These one-dimensional arrays are placed
linearly (zeroth 1-D array followed by first 1-D array, etc.). Hence

294 Let Us C

each one-dimensional arrays starts 4 bytes further along than the
last one, as can be seen in the memory map of the array shown
below.

Figure 8.6

s[3][1] s[3][0]s[2][1]s[2][0]s[1][1]s[0][0] s[0][1] s[1][0]

14341212

65522 65520 65518 65516 65514 65512 65510 65508

80 1312 78 33 56 1234

We know that the expressions s[0] and s[1] would yield the
addresses of the zeroth and first one-dimensional array
respectively. From Figure 8.6 these addresses turn out to be 65508
and 65512.

Now, we have been able to reach each one-dimensional array.
What remains is to be able to refer to individual elements of a one-
dimensional array. Suppose we want to refer to the element s[2][1]
using pointers. We know (from the above program) that s[2] would
give the address 65516, the address of the second one-dimensional
array. Obviously (65516 + 1) would give the address 65518. Or
(s[2] + 1) would give the address 65518. And the value at this
address can be obtained by using the value at address operator,
saying *(s[2] + 1). But, we have already studied while learning
one-dimensional arrays that num[i] is same as *(num + i).
Similarly, *(s[2] + 1) is same as, *(*(s + 2) + 1). Thus, all the
following expressions refer to the same element,

s[2][1]
* (s[2] + 1)
* (* (s + 2) + 1)

Chapter 8: Arrays 295

Using these concepts the following program prints out each
element of a two-dimensional array using pointer notation.

/* Pointer notation to access 2-D array elements */
main()
{
 int s[4][2] = {
 { 1234, 56 },
 { 1212, 33 },
 { 1434, 80 },
 { 1312, 78 }
 } ;
 int i, j ;

 for (i = 0 ; i <= 3 ; i++)
 {
 printf ("\n") ;
 for (j = 0 ; j <= 1 ; j++)
 printf ("%d ", *(*(s + i) + j)) ;
 }
}

And here is the output...

1234 56
1212 33
1434 80
1312 78

Pointer to an Array

If we can have a pointer to an integer, a pointer to a float, a pointer
to a char, then can we not have a pointer to an array? We certainly
can. The following program shows how to build and use it.

296 Let Us C

/* Usage of pointer to an array */
main()
{
 int s[5][2] = {
 { 1234, 56 },
 { 1212, 33 },
 { 1434, 80 },
 { 1312, 78 }
 } ;
 int (*p)[2] ;
 int i, j, *pint ;

 for (i = 0 ; i <= 3 ; i++)
 {
 p = &s[i] ;
 pint = p ;
 printf ("\n") ;
 for (j = 0 ; j <= 1 ; j++)
 printf ("%d ", *(pint + j)) ;
 }
}

And here is the output...

1234 56
1212 33
1434 80
1312 78

Here p is a pointer to an array of two integers. Note that the
parentheses in the declaration of p are necessary. Absence of them
would make p an array of 2 integer pointers. Array of pointers is
covered in a later section in this chapter. In the outer for loop each
time we store the address of a new one-dimensional array. Thus
first time through this loop p would contain the address of the
zeroth 1-D array. This address is then assigned to an integer
pointer pint. Lastly, in the inner for loop using the pointer pint we

Chapter 8: Arrays 297

have printed the individual elements of the 1-D array to which p is
pointing.

But why should we use a pointer to an array to print elements of a
2-D array. Is there any situation where we can appreciate its usage
better? The entity pointer to an array is immensely useful when we
need to pass a 2-D array to a function. This is discussed in the next
section.

Passing 2-D Array to a Function

There are three ways in which we can pass a 2-D array to a
function. These are illustrated in the following program.

/* Three ways of accessing a 2-D array */

main()
{
 int a[3][4] = {
 1, 2, 3, 4,
 5, 6, 7, 8,
 9, 0, 1, 6
 } ;

 clrscr() ;
 display (a, 3, 4) ;
 show (a, 3, 4) ;
 print (a, 3, 4) ;
}
display (int *q, int row, int col)
{
 int i, j ;

 for (i = 0 ; i < row ; i++)
 {
 for (j = 0 ; j < col ; j++)
 printf ("%d ", * (q + i * col + j)) ;

298 Let Us C

 printf ("\n") ;
 }
 printf ("\n") ;
}

show (int (*q)[4], int row, int col)
{
 int i, j ;
 int *p ;

 for (i = 0 ; i < row ; i++)
 {
 p = q + i ;
 for (j = 0 ; j < col ; j++)
 printf ("%d ", * (p + j)) ;

 printf ("\n") ;
 }
 printf ("\n") ;
}

print (int q[][4], int row, int col)
{
 int i, j ;

 for (i = 0 ; i < row ; i++)
 {
 for (j = 0 ; j < col ; j++)
 printf ("%d ", q[i][j]) ;
 printf ("\n") ;
 }
 printf ("\n") ;
}

And here is the output…

1 2 3 4
5 6 7 8

Chapter 8: Arrays 299

9 0 1 6

1 2 3 4
5 6 7 8
9 0 1 6

1 2 3 4
5 6 7 8
9 0 1 6

In the display() function we have collected the base address of the
2-D array being passed to it in an ordinary int pointer. Then
through the two for loops using the expression * (q + i * col + j)
we have reached the appropriate element in the array. Suppose i is
equal to 2 and j is equal to 3, then we wish to reach the element
a[2][3]. Let us see whether the expression * (q + i * col + j) does
give this element or not. Refer Figure 8.7 to understand this.

18 9 07 6 2 3 4 5 61

…22 …24 …20…18…16…14…08 …10 …12 65502 …04 …06

Figure 8.7

The expression * (q + i * col + j) becomes * (65502 + 2 * 4 + 3).
This turns out to be * (65502 + 11). Since 65502 is address of an
integer, * (65502 + 11) turns out to be * (65524). Value at this
address is 6. This is indeed same as a[2][3]. A more general
formula for accessing each array element would be:

* (base address + row no. * no. of columns + column no.)

In the show() function we have defined q to be a pointer to an
array of 4 integers through the declaration:

300 Let Us C

int (*q)[4] ;

To begin with, q holds the base address of the zeroth 1-D array,
i.e. 4001 (refer Figure 8.7). This address is then assigned to p, an
int pointer, and then using this pointer all elements of the zeroth 1-
D array are accessed. Next time through the loop when i takes a
value 1, the expression q + i fetches the address of the first 1-D
array. This is because, q is a pointer to zeroth 1-D array and
adding 1 to it would give us the address of the next 1-D array. This
address is once again assigned to p, and using it all elements of the
next 1-D array are accessed.

In the third function print(), the declaration of q looks like this:

int q[][4] ;

This is same as int (*q)[4], where q is pointer to an array of 4
integers. The only advantage is that we can now use the more
familiar expression q[i][j] to access array elements. We could have
used the same expression in show() as well.

Array of Pointers
The way there can be an array of ints or an array of floats,
similarly there can be an array of pointers. Since a pointer variable
always contains an address, an array of pointers would be nothing
but a collection of addresses. The addresses present in the array of
pointers can be addresses of isolated variables or addresses of
array elements or any other addresses. All rules that apply to an
ordinary array apply to the array of pointers as well. I think a
program would clarify the concept.

main()
{
 int *arr[4] ; /* array of integer pointers */

Chapter 8: Arrays 301

 int i = 31, j = 5, k = 19, l = 71, m ;

 arr[0] = &i ;
 arr[1] = &j ;
 arr[2] = &k ;
 arr[3] = &l ;

 for (m = 0 ; m <= 3 ; m++)
 printf ("%d ", * (arr[m])) ;
}

Figure 8.8 shows the contents and the arrangement of the array of
pointers in memory. As you can observe, arr contains addresses of
isolated int variables i, j, k and l. The for loop in the program
picks up the addresses present in arr and prints the values present
at these addresses.

65510 65516 65514 65512

65518 65520 65522 65524

arr[0] arr[1] arr[2] arr[3]

31

65516 655106551265514

i j k

71195

l`

Figure 8.8

An array of pointers can even contain the addresses of other
arrays. The following program would justify this.

main()
{
 static int a[] = { 0, 1, 2, 3, 4 } ;

302 Let Us C

 int *p[] = { a, a + 1, a + 2, a + 3, a + 4 } ;

 printf ("\n%u %u %d", p, *p, * (*p)) ;
}

I would leave it for you to figure out the output of this program.

Three-Dimensional Array
We aren’t going to show a programming example that uses a three-
dimensional array. This is because, in practice, one rarely uses this
array. However, an example of initializing a three-dimensional
array will consolidate your understanding of subscripts:

int arr[3][4][2] = {
 {
 { 2, 4 },
 { 7, 8 },
 { 3, 4 },
 { 5, 6 }
 },
 {
 { 7, 6 },
 { 3, 4 },
 { 5, 3 },
 { 2, 3 }
 },
 {
 { 8, 9 },
 { 7, 2 },
 { 3, 4 },
 { 5, 1 },
 }
 } ;

A three-dimensional array can be thought of as an array of arrays
of arrays. The outer array has three elements, each of which is a

Chapter 8: Arrays 303

two-dimensional array of four one-dimensional arrays, each of
which contains two integers. In other words, a one-dimensional
array of two elements is constructed first. Then four such one-
dimensional arrays are placed one below the other to give a two-
dimensional array containing four rows. Then, three such two-
dimensional arrays are placed one behind the other to yield a three-
dimensional array containing three 2-dimensional arrays. In the
array declaration note how the commas have been given. Figure
8.9 would possibly help you in visualising the situation better.

65

2

2nd 2-D Array
1st 2-D Array
0th 2-D Array

7 8

33
3

4

4 4

1

4
2

8 9

67

Figure 8.9

Again remember that the arrangement shown above is only
conceptually true. In memory the same array elements are stored
linearly as shown in Figure 8.10.

0th 2-D Array 1st 2-D Array 2nd 2-D Array

4 5 1 2 3 7 8 4 5 6 7 4 3 4 7 2 38 9 6 5 32 3

655106549465478

Figure 8.10

304 Let Us C

How would you refer to the array element 1 in the above array?
The first subscript should be [2], since the element is in third two-
dimensional array; the second subscript should be [3] since the
element is in fourth row of the two-dimensional array; and the
third subscript should be [1] since the element is in second position
in the one-dimensional array. We can therefore say that the
element 1 can be referred as arr[2][3][1]. It may be noted here that
the counting of array elements even for a 3-D array begins with
zero. Can we not refer to this element using pointer notation? Of
course, yes. For example, the following two expressions refer to
the same element in the 3-D array:

arr[2][3][1]
*(*(*(arr + 2) + 3) + 1)

Summary
(a)

(b)
(c)

(d)

(e)

(f)

An array is similar to an ordinary variable except that it can
store multiple elements of similar type.
Compiler doesn’t perform bounds checking on an array.
The array variable acts as a pointer to the zeroth element of
the array. In a 1-D array, zeroth element is a single value,
whereas, in a 2-D array this element is a 1-D array.
On incrementing a pointer it points to the next location of its
type.
Array elements are stored in contiguous memory locations
and so they can be accessed using pointers.
Only limited arithmetic can be done on pointers.

Exercise

Simple arrays

[A] What would be the output of the following programs:

(a) main()

Chapter 8: Arrays 305

{
 int num[26], temp ;
 num[0] = 100 ;
 num[25] = 200 ;
 temp = num[25] ;
 num[25] = num[0] ;
 num[0] = temp ;
 printf ("\n%d %d", num[0], num[25]) ;
}

(b) main()
{
 int array[26], i ;
 for (i = 0 ; i <= 25 ; i++)
 {
 array[i] = 'A' + i ;
 printf ("\n%d %c", array[i], array[i]) ;
 }
}

(c) main()
{
 int sub[50], i ;
 for (i = 0 ; i <= 48 ; i++) ;
 {
 sub[i] = i ;
 printf ("\n%d", sub[i]) ;
 }
}

[B] Point out the errors, if any, in the following program

segments:

(a) /* mixed has some char and some int values */

int char mixed[100] ;

main()
{
 int a[10], i ;

306 Let Us C

 for (i = 1 ; i <= 10 ; i++)
 {
 scanf ("%d", a[i]) ;
 printf ("%d", a[i]) ;
 }
}

(b) main()

{
 int size ;
 scanf ("%d", &size) ;
 int arr[size] ;
 for (i = 1 ; i <= size ; i++)
 {
 scanf ("%d", arr[i]) ;
 printf ("%d", arr[i]) ;
 }
}

(c) main()
{
 int i, a = 2, b = 3 ;
 int arr[2 + 3] ;
 for (i = 0 ; i < a+b ; i++)
 {
 scanf ("%d", &arr[i]) ;
 printf ("\n%d", arr[i]) ;
 }
}

[C] Answer the following:

(a) An array is a collection of

1. different data types scattered throughout memory
2. the same data type scattered throughout memory
3. the same data type placed next to each other in memory
4. different data types placed next to each other in memory

Chapter 8: Arrays 307

(b) Are the following array declarations correct?

int a (25) ;
int size = 10, b[size] ;
int c = {0,1,2} ;

(c) Which element of the array does this expression reference?

num[4]

(d) What is the difference between the 5’s in these two

expressions? (Select the correct answer)

int num[5] ;
num[5] = 11 ;

1. first is particular element, second is type
2. first is array size, second is particular element
3. first is particular element, second is array size
4. both specify array size

(e) State whether the following statements are True or False:

1. The array int num[26] has twenty-six elements.
2. The expression num[1] designates the first element in the

array
3. It is necessary to initialize the array at the time of

declaration.
4. The expression num[27] designates the twenty-eighth

element in the array.

[D] Attempt the following:

(a) Twenty-five numbers are entered from the keyboard into an

array. The number to be searched is entered through the
keyboard by the user. Write a program to find if the number to
be searched is present in the array and if it is present, display
the number of times it appears in the array.

308 Let Us C

(b) Twenty-five numbers are entered from the keyboard into an
array. Write a program to find out how many of them are
positive, how many are negative, how many are even and how
many odd.

(c) Implement the Selection Sort, Bubble Sort and Insertion sort
algorithms on a set of 25 numbers. (Refer Figure 8.11 for the
logic of the algorithms)

− Selection sort
− Bubble Sort
− Insertion Sort

Selection Sort

Iteration 1 Iteration 2

0 44 33 33 22 0 11 0 11 0 11

1 33 44 44 44 1 44 1 44 1 33

2 55 55 55 55 2 55 2 55 2 55

3 22 22 22 33 3 33 3 33 3 44

4 11 11 11 11 4 22 4 22 4 22

 Iteration 3 Iteration 4

 Result

0 11 0 11 0 11 0 11

1 22 1 22 1 22 1 22

2 55 2 44 2 33 2 33

3 44 3 55 3 55 3 44

4 33 4 33

4 44

4 55

Figure 8.11 (a)

Chapter 8: Arrays 309

Bubble Sort

 Iteration 1 Iteration 2

 0 44 33 33 33 33 0 33 0 33

 1 33 44 44 44 44

1 44

1 22

 2 55 55 55 22 22 2 22 2 44

 3 22 22 22 55 11 3 11 3 11

 4 11

11

11

11

 0
1
2
3
4 55

4 55

4 55

 Iteration 3 Iteration 4

 Result

 0 33 0 22 0 22 0 11

 1 22 1 33 1 11 1 22

 2 11 2 11 2 33 2 33

 3 44 3 44 3 44 3 44

 4 55 4 55

4 55 4 55

Figure 8.11 (b)

Insertion Sort

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Result
 44 33 33 22 0 11
 33 44 44 33 1 22
 55 55 55 44 2 33
 22 22 22 55 3 44
 11 11 11 11 4 55

Figure 8.11 (c)

310 Let Us C

(d) Implement the following procedure to generate prime
numbers from 1 to 100 into a program. This procedure is
called sieve of Eratosthenes.

step 1 Fill an array num[100] with numbers from 1 to 100
step 2 Starting with the second entry in the array, set all its

multiples to zero.
step 3 Proceed to the next non-zero element and set all its

multiples to zero.
step 4 Repeat step 3 till you have set up the multiples of

all the non-zero elements to zero
step 5 At the conclusion of step 4, all the non-zero entries

left in the array would be prime numbers, so print
out these numbers.

More on arrays, Arrays and pointers

[E] What would be the output of the following programs:

(a) main()

{
 int b[] = { 10, 20, 30, 40, 50 } ;
 int i ;
 for (i = 0 ; i <= 4 ; i++)
 printf ("\n%d" *(b + i)) ;
}

(b) main()
{
 int b[] = { 0, 20, 0, 40, 5 } ;
 int i, *k ;
 k = b ;
 for (i = 0 ; i <= 4 ; i++)
 {
 printf ("\n%d" *k) ;

Chapter 8: Arrays 311

 k++ ;
 }
}

(c) main()
{
 int a[] = { 2, 4, 6, 8, 10 } ;
 int i ;
 change (a, 5) ;
 for (i = 0 ; i <= 4 ; i++)
 printf("\n%d", a[i]) ;
}
change (int *b, int n)
{
 int i ;
 for (i = 0 ; i < n ; i++)
 *(b + i) = *(b + i) + 5 ;
}

(d) main()
{
 int a[5], i, b = 16 ;
 for (i = 0 ; i < 5 ; i++)
 a[i] = 2 * i ;
 f (a, b) ;
 for (i = 0 ; i < 5 ; i++)
 printf ("\n%d", a[i]) ;
 printf("\n%d", b) ;
}
f (int *x, int y)
{
 int i ;
 for (i = 0 ; i < 5 ; i++)
 *(x + i) += 2 ;
 y += 2 ;
}

312 Let Us C

(e) main()
{
 static int a[5] ;
 int i ;
 for (i = 0 ; i <= 4 ; i++)
 printf ("\n%d", a[i]) ;
}

(f) main()
{
 int a[5] = { 5, 1, 15, 20, 25 } ;
 int i, j, k = 1, m ;
 i = ++a[1] ;
 j = a[1]++ ;
 m = a[i++] ;
 printf ("\n%d %d %d", i, j, m) ;
}

[F] Point out the errors, if any, in the following programs:

(a) main()

{
 int array[6] = { 1, 2, 3, 4, 5, 6 } ;
 int i ;
 for (i = 0 ; i <= 25 ; i++)
 printf ("\n%d", array[i]) ;
}

(b) main()
{
 int sub[50], i ;
 for (i = 1 ; i <= 50 ; i++)
 {
 sub[i] = i ;
 printf ("\n%d" , sub[i]) ;
 }
}

Chapter 8: Arrays 313

(c) main()
{
 int a[] = { 10, 20, 30, 40, 50 } ;
 int j ;
 j = a ; /* store the address of zeroth element */
 j = j + 3 ;
 printf ("\n%d" *j) ;
}

(d) main()
{
 float a[] = { 13.24, 1.5, 1.5, 5.4, 3.5 } ;
 float *j ;
 j = a ;
 j = j + 4 ;
 printf ("\n%d %d %d", j, *j, a[4]) ;
}

(e) main()
{
 float a[] = { 13.24, 1.5, 1.5, 5.4, 3.5 } ;
 float *j, *k ;
 j = a ;
 k = a + 4 ;
 j = j * 2 ;
 k = k / 2 ;
 printf ("\n%d %d", *j, *k) ;
}

(f) main()
{
 int max = 5 ;
 float arr[max] ;
 for (i = 0 ; i < max ; i++)
 scanf ("%f", &arr[i]) ;
}

314 Let Us C

[G] Answer the following:

(a) What would happen if you try to put so many values into an

array when you initialize it that the size of the array is
exceeded?

1. nothing
2. possible system malfunction
3. error message from the compiler
4. other data may be overwritten

(b) In an array int arr[12] the word arr represents the

a_________ of the array

(c) What would happen if you put too few elements in an array

when you initialize it?

1. nothing
2. possible system malfunction
3. error message from the compiler
4. unused elements will be filled with 0’s or garbage

(d) What would happen if you assign a value to an element of an

array whose subscript exceeds the size of the array?

1. the element will be set to 0
2. nothing, it’s done all the time
3. other data may be overwritten
4. error message from the compiler

(e) When you pass an array as an argument to a function, what

actually gets passed?

1. address of the array
2. values of the elements of the array
3. address of the first element of the array
4. number of elements of the array

Chapter 8: Arrays 315

(f) Which of these are reasons for using pointers?

1. To manipulate parts of an array
2. To refer to keywords such as for and if
3. To return more than one value from a function
4. To refer to particular programs more conveniently

(g) If you don’t initialize a static array, what would be the

elements set to?

1. 0
2. an undetermined value
3. a floating point number
4. the character constant '\0'

[H] State True or False:

(a)

(b)

(c)

Address of a floating-point variable is always a whole
number.

Which of the following is the correct way of declaring a float
pointer:

5. float ptr ;
6. float *ptr ;
7. *float ptr ;
8. None of the above

Add the missing statement for the following program to print
35.

main()
{
 int j, *ptr ;
 *ptr = 35 ;
 printf ("\n%d", j) ;
}

316 Let Us C

(d) if int s[5] is a one-dimensional array of integers, which of the
following refers to the third element in the array?

9. *(s + 2)
10. *(s + 3)
11. s + 3
12. s + 2

[I] Attempt the following:

(a) Write a program to copy the contents of one array into another

in the reverse order.

(b) If an array arr contains n elements, then write a program to

check if arr[0] = arr[n-1], arr[1] = arr[n-2] and so on.

(c) Find the smallest number in an array using pointers.

(d) Write a program which performs the following tasks:

− initialize an integer array of 10 elements in main()
− pass the entire array to a function modify()
− in modify() multiply each element of array by 3
− return the control to main() and print the new array

elements in main()

(e) The screen is divided into 25 rows and 80 columns. The

characters that are displayed on the screen are stored in a
special memory called VDU memory (not to be confused with
ordinary memory). Each character displayed on the screen
occupies two bytes in VDU memory. The first of these bytes
contains the ASCII value of the character being displayed,
whereas, the second byte contains the colour in which the
character is displayed.

For example, the ASCII value of the character present on
zeroth row and zeroth column on the screen is stored at

Chapter 8: Arrays 317

location number 0xB8000000. Therefore the colour of this
character would be present at location number 0xB8000000 +
1. Similarly ASCII value of character in row 0, col 1 will be at
location 0xB8000000 + 2, and its colour at 0xB8000000 + 3.

With this knowledge write a program which when executed
would keep converting every capital letter on the screen to
small case letter and every small case letter to capital letter.
The procedure should stop the moment the user hits a key
from the keyboard.

This is an activity of a rampant Virus called Dancing Dolls.
(For monochrome adapter, use 0xB0000000 instead of
0xB8000000).

More than one dimension

[J] What would be the output of the following programs:

(a) main()

{
 int n[3][3] = {
 2, 4, 3,
 6, 8, 5,
 3, 5, 1
 } ;
 printf ("\n%d %d %d", *n, n[3][3], n[2][2]) ;
}

(b) main()
{
 int n[3][3] = {
 2, 4, 3,
 6, 8, 5,
 3, 5, 1
 } ;
 int i, *ptr ;

318 Let Us C

 ptr = n ;
 for (i = 0 ; i <= 8 ; i++)
 printf ("\n%d", *(ptr + i)) ;
}

(c) main()
{
 int n[3][3] = {
 2, 4, 3,
 6, 8, 5,
 3, 5, 1
 } ;
 int i, j ;
 for (i = 0 ; i <= 2 ; i++)
 for (j = 0 ; j <= 2 ; j++)
 printf ("\n%d %d", n[i][j], *(*(n + i) + j)) ;
}

[K] Point out the errors, if any, in the following programs:

(a) main()

{
 int twod[][] = {
 2, 4,
 6, 8
 } ;
 printf ("\n%d", twod) ;
}

(b) main()
{
 int three[3][] = {
 2, 4, 3,
 6, 8, 2,
 2, 3 ,1
 } ;
 printf ("\n%d", three[1][1]) ;

Chapter 8: Arrays 319

}

[L] Attempt the following:

(a) How will you initialize a three-dimensional array

threed[3][2][3]? How will you refer the first and last element
in this array?

(b) Write a program to pick up the largest number from any 5 row

by 5 column matrix.

(c) Write a program to obtain transpose of a 4 x 4 matrix. The

transpose of a matrix is obtained by exchanging the elements
of each row with the elements of the corresponding column.

(d) Very often in fairs we come across a puzzle that contains 15

numbered square pieces mounted on a frame. These pieces
can be moved horizontally or vertically. A possible
arrangement of these pieces is shown below:

 1 4 15 7

 8 10 2 11

 14 3 6 13

 12 9 5

Figure 8.12

As you can see there is a blank at bottom right corner.
Implement the following procedure through a program:

320 Let Us C

Draw the boxes as shown above. Display the numbers in the
above order. Allow the user to hit any of the arrow keys (up,
down, left, or right).

If user hits say, right arrow key then the piece with a number
5 should move to the right and blank should replace the
original position of 5. Similarly, if down arrow key is hit, then
13 should move down and blank should replace the original
position of 13. If left arrow key or up arrow key is hit then no
action should be taken.

The user would continue hitting the arrow keys till the
numbers aren’t arranged in ascending order.

Keep track of the number of moves in which the user manages
to arrange the numbers in ascending order. The user who
manages it in minimum number of moves is the one who
wins.

How do we tackle the arrow keys? We cannot receive them
using scanf() function. Arrow keys are special keys which
are identified by their ‘scan codes’. Use the following
function in your program. It would return the scan code of the
arrow key being hit. Don’t worry about how this function is
written. We are going to deal with it later. The scan codes for
the arrow keys are:

up arrow key – 72 down arrow key – 80
left arrow key – 75 right arrow key – 77

/* Returns scan code of the key that has been hit */
#include "dos.h"
getkey()
{
 union REGS i, o ;

Chapter 8: Arrays 321

 while (!kbhit())
 ;
 i.h.ah = 0 ;
 int86 (22, &i, &o) ;
 return (o.h.ah) ;
}

(e) Those readers who are from an Engineering/Science
background may try writing programs for following problems.

(1) Write a program to add two 6 x 6 matrices.
(2) Write a program to multiply any two 3 x 3 matrices.
(3) Write a program to sort all the elements of a 4 x 4 matrix.
(4) Write a program to obtain the determinant value of a 5 x

5 matrix.

(f) Match the following with reference to the following program
segment:

int i, j, = 25;
int *pi, *pj = & j;
…….
……. /* more lines of program */
…….
*pj = j + 5;
j = *pj + 5 ;
pj = pj ;
*pi = i + j

Each integer quantity occupies 2 bytes of memory. The value
assigned to i begin at (hexadecimal) address F9C and the
value assigned to j begins at address F9E. Match the value
represented by left hand side quantities with the right.

1. &i a. 30
2. &j b. F9E
3. pj c. 35
4. *pj d. FA2

322 Let Us C

5. i e. F9C
6. pi f. 67
7. *pi g. unspecified
8. (pi + 2) h. 65
9. (*pi + 2) i. F9E
10. * (pi + 2) j. F9E

k. FAO
l. F9D

(g) Match the following with reference to the following segment:
int x[3][5] = {
 { 1, 2, 3, 4, 5 },
 { 6, 7, 8, 9, 10 },
 { 11, 12, 13, 14, 15 }
 }, *n = &x ;

1. *(*(x + 2) + 1) a. 9
2. *(*x + 2) + 5 b. 13
3. *(*(x + 1)) c. 4
4. *(*(x) + 2) + 1 d. 3
5. * (*(x + 1) + 3) e. 2
6. *n f. 12
7. *(n +2) g. 14
8. (*(n + 3) + 1 h. 7
9. *(n + 5)+1 i. 1
10. ++*n j. 8

k. 5
l. 10
m. 6

(h) Match the following with reference to the following program
segment:

struct
{
 int x, y;
} s[] = { 10, 20, 15, 25, 8, 75, 6, 2 };
int *i ;
i = s ;

Chapter 8: Arrays 323

1. *(i + 3) a. 85
2. s[i[7]].x b. 2
3. s[(s + 2)->y / 3[I]].y c. 6
4. i[i[1]-i[2]] d. 7
5. i[s[3].y] e. 16
6. (s + 1)->x + 5 f. 15
7. *(1 +i)**(i + 4) / *i g. 25
8. s[i[0] – i[4]].y + 10 h. 8
9. (*(s + *(i + 1) / *i)).x + 2 i. 1
10. ++i[i[6]] j. 100

k. 10
l. 20

(i) Match the following with reference to the following program
segment:

unsigned int arr[3][3] = {
 2, 4, 6,
 9, 1, 10,
 16, 64, 5
 } ;

1. **arr a. 64
2. **arr < *(*arr + 2) b. 18
3. *(arr + 2) / (*(*arr + 1) > **arr) c. 6
4. *(arr[1] + 1) | arr[1][2] d. 3
5. *(arr[0]) | *(arr[2]) e. 0
6. arr[1][1] < arr[0][1] f. 16
7. arr[2][[1] & arr[2][0] g. 1
8. arr[2][2] | arr[0][1] h. 11
9. arr[0][1] ^ arr[0][2] i. 20
10. ++**arr + --arr[1][1] j. 2

k. 5
l. 4

(j) Write a program that interchanges the odd and even
components of an array.

(k) Write a program to find if a square matrix is symmetric.

324 Let Us C

(l) Write a function to find the norm of a matrix. The norm is
defined as the square root of the sum of squares of all
elements in the matrix.

(m) Given an array p[5], write a function to shift it circularly left
by two positions. Thus, if p[0] = 15, p[1]= 30, p[2] = 28,
p[3]= 19 and p[4] = 61 then after the shift p[0] = 28, p[1] =
19, p[2] = 61, p[3] = 15 and p[4] = 30. Call this function for a
(4 x 5) matrix and get its rows left shifted.

(n) A 6 x 6 matrix is entered through the keyboard and stored in a
2-dimensional array mat[7][7]. Write a program to obtain the
Determinant values of this matrix.

(o) For the following set of sample data, compute the standard
deviation and the mean.

-6, -12, 8, 13, 11, 6, 7, 2, -6, -9, -10, 11, 10, 9, 2

The formula for standard deviation is

n
xxi

2)(−

where xi is the data item and x is the mean.

(p) The area of a triangle can be computed by the sine law when 2
sides of the triangle and the angle between them are known.

Area = (1 / 2) ab sin (angle)

Given the following 6 triangular pieces of land, write a
program to find their area and determine which is largest,

Plot No. a b angle

1 137.4 80.9 0.78
2 155.2 92.62 0.89
3 149.3 97.93 1.35

Chapter 8: Arrays 325

4 160.0 100.25 9.00
5 155.6 68.95 1.25
6 149.7 120.0 1.75

(q) For the following set of n data points (x, y), compute the
correlation coefficient r, given by

∑ ∑∑
∑

∑
∑ ∑

−−

−
=

])([])([2222 yynxxn

yxxy
r

 x y
34.22 102.43
39.87 100.93
41.85 97.43
43.23 97.81
40.06 98.32
53.29 98.32
53.29 100.07
54.14 97.08
49.12 91.59
40.71 94.85
55.15 94.65

(r) For the following set of point given by (x, y) fit a straight line
given by

y = a + bx
where,

 and

∑ ∑
∑∑∑

−

−
=

])([22 xxn
yxyxn

b

x y
3.0 1.5

xb
__

y
__

= − a

326 Let Us C

4.5 2.0
5.5 3.5
6.5 5.0
7.5 6.0
8.5 7.5
8.0 9.0
9.0 10.5
9.5 12.0
10.0 14.0

(s) The X and Y coordinates of 10 different points are entered
through the keyboard. Write a program to find the distance of
last point from the first point (sum of distance between
consecutive points).

9 Puppetting On
 Strings

• What are Strings
• More about Strings
• Pointers and Strings
• Standard Library String Functions

strlen()
strcpy()
strcat()
strcmp()

• Two-Dimensional Array of Characters
• Array of Pointers to Strings
• Limitation of Array of Pointers to Strings

Solution
• Summary
• Exercise

327

328 Let Us C

n the last chapter you learnt how to define arrays of differing
sizes and dimensions, how to initialize arrays, how to pass
arrays to a function, etc. With this knowledge under your belt,

you should be ready to handle strings, which are, simply put, a
special kind of array. And strings, the ways to manipulate them,
and how pointers are related to strings are going to be the topics of
discussion in this chapter.

I

What are Strings

The way a group of integers can be stored in an integer array,
similarly a group of characters can be stored in a character array.
Character arrays are many a time also called strings. Many
languages internally treat strings as character arrays, but somehow
conceal this fact from the programmer. Character arrays or strings
are used by programming languages to manipulate text such as
words and sentences.

A string constant is a one-dimensional array of characters
terminated by a null (‘\0’). For example,

char name[] = { 'H', 'A', 'E', 'S', 'L', 'E', 'R', '\0' } ;

Each character in the array occupies one byte of memory and the
last character is always ‘\0’. What character is this? It looks like
two characters, but it is actually only one character, with the \
indicating that what follows it is something special. ‘\0’ is called
null character. Note that ‘\0’ and ‘0’ are not same. ASCII value of
‘\0’ is 0, whereas ASCII value of ‘0’ is 48. Figure 9.1 shows the
way a character array is stored in memory. Note that the elements
of the character array are stored in contiguous memory locations.

The terminating null (‘\0’) is important, because it is the only way
the functions that work with a string can know where the string
ends. In fact, a string not terminated by a ‘\0’ is not really a string,
but merely a collection of characters.

Chapter 9: Puppetting On Strings 329

Figure 9.1

65525 6552465523655226552165519 6552065518

\0 R E L S E H A

C concedes the fact that you would use strings very often and
hence provides a shortcut for initializing strings. For example, the
string used above can also be initialized as,

char name[] = "HAESLER" ;

Note that, in this declaration ‘\0’ is not necessary. C inserts the
null character automatically.

More about Strings

In what way are character arrays different than numeric arrays?
Can elements in a character array be accessed in the same way as
the elements of a numeric array? Do I need to take any special care
of ‘\0’? Why numeric arrays don’t end with a ‘\0’? Declaring
strings is okay, but how do I manipulate them? Questions galore!!
Well, let us settle some of these issues right away with the help of
sample programs.

/* Program to demonstrate printing of a string */
main()
{
 char name[] = "Klinsman" ;
 int i = 0 ;

 while (i <= 7)
 {
 printf ("%c", name[i]) ;
 i++ ;
 }

330 Let Us C

}

And here is the output...

Klinsman

No big deal. We have initialized a character array, and then printed
out the elements of this array within a while loop. Can we write
the while loop without using the final value 7? We can; because
we know that each character array always ends with a ‘\0’.
Following program illustrates this.

main()
{
 char name[] = "Klinsman" ;
 int i = 0 ;

 while (name[i] != `\0')
 {
 printf ("%c", name[i]) ;
 i++ ;
 }
}

And here is the output...

Klinsman

This program doesn’t rely on the length of the string (number of
characters in it) to print out its contents and hence is definitely
more general than the earlier one. Here is another version of the
same program; this one uses a pointer to access the array elements.

main()
{
 char name[] = "Klinsman" ;
 char *ptr ;

Chapter 9: Puppetting On Strings 331

 ptr = name ; /* store base address of string */

 while (*ptr != `\0')
 {
 printf ("%c", *ptr) ;
 ptr++ ;
 }
}

As with the integer array, by mentioning the name of the array we
get the base address (address of the zeroth element) of the array.
This base address is stored in the variable ptr using,

ptr = name ;

Once the base address is obtained in ptr, *ptr would yield the
value at this address, which gets printed promptly through,

printf ("%c", *ptr) ;

Then, ptr is incremented to point to the next character in the
string. This derives from two facts: array elements are stored in
contiguous memory locations and on incrementing a pointer it
points to the immediately next location of its type. This process is
carried out till ptr doesn’t point to the last character in the string,
that is, ‘\0’.

In fact, the character array elements can be accessed exactly in the
same way as the elements of an integer array. Thus, all the
following notations refer to the same element:

name[i]
*(name + i)
*(i + name)
i[name]

332 Let Us C

Even though there are so many ways (as shown above) to refer to
the elements of a character array, rarely is any one of them used.
This is because printf() function has got a sweet and simple way
of doing it, as shown below. Note that printf() doesn’t print the
‘\0’.

main()
{
 char name[] = "Klinsman" ;
 printf ("%s", name) ;
}

The %s used in printf() is a format specification for printing out a
string. The same specification can be used to receive a string from
the keyboard, as shown below.

main()
{
 char name[25] ;

 printf ("Enter your name ") ;
 scanf ("%s", name) ;
 printf ("Hello %s!", name) ;
}

And here is a sample run of the program...

Enter your name Debashish
Hello Debashish!

Note that the declaration char name[25] sets aside 25 bytes under
the array name[], whereas the scanf() function fills in the
characters typed at keyboard into this array until the enter key is
hit. Once enter is hit, scanf() places a ‘\0’ in the array. Naturally,
we should pass the base address of the array to the scanf()
function.

Chapter 9: Puppetting On Strings 333

While entering the string using scanf() we must be cautious about
two things:

(a)

(b)

The length of the string should not exceed the dimension of
the character array. This is because the C compiler doesn’t
perform bounds checking on character arrays. Hence, if you
carelessly exceed the bounds there is always a danger of
overwriting something important, and in that event, you
would have nobody to blame but yourselves.

scanf() is not capable of receiving multi-word strings.
Therefore names such as ‘Debashish Roy’ would be
unacceptable. The way to get around this limitation is by
using the function gets(). The usage of functions gets() and
its counterpart puts() is shown below.

main()
{
 char name[25] ;

 printf ("Enter your full name ") ;
 gets (name) ;
 puts ("Hello!") ;
 puts (name) ;
}

And here is the output...

Enter your name Debashish Roy
Hello!
Debashish Roy

The program and the output are self-explanatory except for
the fact that, puts() can display only one string at a time
(hence the use of two puts() in the program above). Also, on
displaying a string, unlike printf(), puts() places the cursor
on the next line. Though gets() is capable of receiving only

334 Let Us C

one string at a time, the plus point with gets() is that it can
receive a multi-word string.

If we are prepared to take the trouble we can make scanf()
accept multi-word strings by writing it in this manner:

char name[25] ;
printf ("Enter your full name ") ;
scanf ("%[^\n]s", name) ;

Though workable this is the best of the ways to call a
function, you would agree.

Pointers and Strings

Suppose we wish to store “Hello”. We may either store it in a
string or we may ask the C compiler to store it at some location in
memory and assign the address of the string in a char pointer. This
is shown below:

char str[] = "Hello" ;
char *p = "Hello" ;

There is a subtle difference in usage of these two forms. For
example, we cannot assign a string to another, whereas, we can
assign a char pointer to another char pointer. This is shown in the
following program.

main()
{
 char str1[] = "Hello" ;
 char str2[10] ;

 char *s = "Good Morning" ;
 char *q ;

Chapter 9: Puppetting On Strings 335

 str2 = str1 ; /* error */
 q = s ; /* works */
}

Also, once a string has been defined it cannot be initialized to
another set of characters. Unlike strings, such an operation is
perfectly valid with char pointers.

main()
{
 char str1[] = "Hello" ;
 char *p = "Hello" ;
 str1 = "Bye" ; /* error */
 p = "Bye" ; /* works */
}

Standard Library String Functions

With every C compiler a large set of useful string handling library
functions are provided. Figure 9.2 lists the more commonly used
functions along with their purpose.

Function Use
strlen Finds length of a string
strlwr Converts a string to lowercase
strupr Converts a string to uppercase
strcat Appends one string at the end of another

strncat Appends first n characters of a string at the end of
another

336 Let Us C

strcpy Copies a string into another
strncpy Copies first n characters of one string into another
strcmp Compares two strings
strncmp Compares first n characters of two strings
strcmpi Compares two strings without regard to case ("i" denotes

that this function ignores case)
stricmp Compares two strings without regard to case (identical to

strcmpi)
strnicmp Compares first n characters of two strings without regard

to case
strdup Duplicates a string
strchr Finds first occurrence of a given character in a string
strrchr Finds last occurrence of a given character in a string
strstr Finds first occurrence of a given string in another string
strset Sets all characters of string to a given character
strnset Sets first n characters of a string to a given character
strrev Reverses string

Figure 9.2

Out of the above list we shall discuss the functions strlen(),
strcpy(), strcat() and strcmp(), since these are the most
commonly used functions. This will also illustrate how the library
functions in general handle strings. Let us study these functions
one by one.

strlen()

This function counts the number of characters present in a string.
Its usage is illustrated in the following program.

main()
{
 char arr[] = "Bamboozled" ;
 int len1, len2 ;

Chapter 9: Puppetting On Strings 337

 len1 = strlen (arr) ;
 len2 = strlen ("Humpty Dumpty") ;

 printf ("\nstring = %s length = %d", arr, len1) ;
 printf ("\nstring = %s length = %d", "Humpty Dumpty", len2) ;
}

The output would be...

string = Bamboozled length = 10
string = Humpty Dumpty length = 13

Note that in the first call to the function strlen(), we are passing
the base address of the string, and the function in turn returns the
length of the string. While calculating the length it doesn’t count
‘\0’. Even in the second call,

len2 = strlen ("Humpty Dumpty") ;

what gets passed to strlen() is the address of the string and not the
string itself. Can we not write a function xstrlen() which imitates
the standard library function strlen()? Let us give it a try...

/* A look-alike of the function strlen() */
main()
{
 char arr[] = "Bamboozled" ;
 int len1, len2 ;

 len1 = xstrlen (arr) ;
 len2 = xstrlen ("Humpty Dumpty") ;

 printf ("\nstring = %s length = %d", arr, len1) ;
 printf ("\nstring = %s length = %d", "Humpty Dumpty", len2) ;
}

338 Let Us C

xstrlen (char *s)
{
 int length = 0 ;

 while (*s != '\0')
 {
 length++ ;
 s++ ;
 }

 return (length) ;
}

The output would be...

string = Bamboozled length = 10
string = Humpty Dumpty length = 13

The function xstrlen() is fairly simple. All that it does is keep
counting the characters till the end of string is not met. Or in other
words keep counting characters till the pointer s doesn’t point to
‘\0’.

strcpy()

This function copies the contents of one string into another. The
base addresses of the source and target strings should be supplied
to this function. Here is an example of strcpy() in action...

main()
{
 char source[] = "Sayonara" ;

Chapter 9: Puppetting On Strings 339

 char target[20] ;

 strcpy (target, source) ;
 printf ("\nsource string = %s", source) ;
 printf ("\ntarget string = %s", target) ;
}

And here is the output...

source string = Sayonara
target string = Sayonara

On supplying the base addresses, strcpy() goes on copying the
characters in source string into the target string till it doesn't
encounter the end of source string (‘\0’). It is our responsibility to
see to it that the target string’s dimension is big enough to hold the
string being copied into it. Thus, a string gets copied into another,
piece-meal, character by character. There is no short cut for this.
Let us now attempt to mimic strcpy(), via our own string copy
function, which we will call xstrcpy().

main()
{
 char source[] = "Sayonara" ;
 char target[20] ;

 xstrcpy (target, source) ;
 printf ("\nsource string = %s", source) ;
 printf ("\ntarget string = %s", target) ;
}

xstrcpy (char *t, char *s)
{
 while (*s != '\0')
 {
 *t = *s ;
 s++ ;

340 Let Us C

 t++ ;
 }
 *t = '\0' ;
}

The output of the program would be...

source string = Sayonara
target string = Sayonara

Note that having copied the entire source string into the target
string, it is necessary to place a ‘\0’ into the target string, to mark
its end.

If you look at the prototype of strcpy() standard library function,
it looks like this…

strcpy (char *t, const char *s) ;

We didn’t use the keyword const in our version of xstrcpy() and
still our function worked correctly. So what is the need of the
const qualifier?

What would happen if we add the following lines beyond the last
statement of xstrcpy()?.

s = s - 8 ;
*s = 'K' ;

This would change the source string to “Kayonara”. Can we not
ensure that the source string doesn’t change even accidentally in
xstrcpy()? We can, by changing the definition as follows:

void xstrcpy (char *t, const char *s)
{
 while (*s != '\0')
 {

Chapter 9: Puppetting On Strings 341

 *t = *s ;
 s++ ;
 t++ ;
 }
 *t = '\0' ;
}

By declaring char *s as const we are declaring that the source
string should remain constant (should not change). Thus the const
qualifier ensures that your program does not inadvertently alter a
variable that you intended to be a constant. It also reminds
anybody reading the program listing that the variable is not
intended to change.

We can use const in several situations. The following code
fragment would help you to fix your ideas about const further.

char *p = "Hello" ; /* pointer is variable, so is string */
p = 'M' ; / works */
p = "Bye" ; /* works */

const char *q = "Hello" ; /* string is fixed pointer is not */
q = 'M' ; / error */
q = "Bye" ; /* works */

char const *s = "Hello" ; /* string is fixed pointer is not */
s = 'M' ; / error */
s = "Bye" ; /* works */

char * const t = "Hello" ; /* pointer is fixed string is not */
t = 'M' ; / works */
t = "Bye" ; /* error */

const char * const u = "Hello" ; /* string is fixed so is pointer */
u = 'M' ; / error */
u = "Bye" ; /* error */

342 Let Us C

The keyword const can be used in context of ordinary variables
like int, float, etc. The following program shows how this can be
done.

main()
{
 float r, a ;
 const float pi = 3.14 ;

 printf ("\nEnter radius of circle ") ;
 scanf ("%f", &r) ;
 a = pi * r * r ;
 printf ("\nArea of circle = %f", a) ;
}

strcat()

This function concatenates the source string at the end of the target
string. For example, “Bombay” and “Nagpur” on concatenation
would result into a string “BombayNagpur”. Here is an example of
strcat() at work.

main()
{
 char source[] = "Folks!" ;
 char target[30] = "Hello" ;

 strcat (target, source) ;
 printf ("\nsource string = %s", source) ;
 printf ("\ntarget string = %s", target) ;
}

And here is the output...

source string = Folks!
target string = HelloFolks!

Chapter 9: Puppetting On Strings 343

Note that the target string has been made big enough to hold the
final string. I leave it to you to develop your own xstrcat() on
lines of xstrlen() and xstrcpy().

strcmp()

This is a function which compares two strings to find out whether
they are same or different. The two strings are compared character
by character until there is a mismatch or end of one of the strings
is reached, whichever occurs first. If the two strings are identical,
strcmp() returns a value zero. If they’re not, it returns the numeric
difference between the ASCII values of the first non-matching
pairs of characters. Here is a program which puts strcmp() in
action.

main()
{
 char string1[] = "Jerry" ;
 char string2[] = "Ferry" ;
 int i, j, k ;

 i = strcmp (string1, "Jerry") ;
 j = strcmp (string1, string2) ;
 k = strcmp (string1, "Jerry boy") ;

 printf ("\n%d %d %d", i, j, k) ;
}

And here is the output...

0 4 -32

In the first call to strcmp(), the two strings are identical—“Jerry”
and “Jerry”—and the value returned by strcmp() is zero. In the
second call, the first character of “Jerry” doesn't match with the
first character of “Ferry” and the result is 4, which is the numeric

344 Let Us C

difference between ASCII value of ‘J’ and ASCII value of ‘F’. In
the third call to strcmp() “Jerry” doesn’t match with “Jerry boy”,
because the null character at the end of “Jerry” doesn’t match the
blank in “Jerry boy”. The value returned is -32, which is the value
of null character minus the ASCII value of space, i.e., ‘\0’ minus
‘ ’, which is equal to -32.

The exact value of mismatch will rarely concern us. All we usually
want to know is whether or not the first string is alphabetically
before the second string. If it is, a negative value is returned; if it
isn’t, a positive value is returned. Any non-zero value means there
is a mismatch. Try to implement this procedure into a function
xstrcmp().

Two-Dimensional Array of Characters

In the last chapter we saw several examples of 2-dimensional
integer arrays. Let’s now look at a similar entity, but one dealing
with characters. Our example program asks you to type your name.
When you do so, it checks your name against a master list to see if
you are worthy of entry to the palace. Here’s the program...

#define FOUND 1
#define NOTFOUND 0
main()
{
 char masterlist[6][10] = {
 "akshay",
 "parag",
 "raman",
 "srinivas",
 "gopal",
 "rajesh"
 } ;
 int i, flag, a ;
 char yourname[10] ;

Chapter 9: Puppetting On Strings 345

 printf ("\nEnter your name ") ;
 scanf ("%s", yourname) ;

 flag = NOTFOUND ;
 for (i = 0 ; i <= 5 ; i++)
 {
 a = strcmp (&masterlist[i][0], yourname) ;
 if (a == 0)
 {
 printf ("Welcome, you can enter the palace") ;
 flag = FOUND ;
 break ;
 }
 }

 if (flag == NOTFOUND)
 printf ("Sorry, you are a trespasser") ;
}

And here is the output for two sample runs of this program...

Enter your name dinesh
Sorry, you are a trespasser
Enter your name raman
Welcome, you can enter the palace

Notice how the two-dimensional character array has been
initialized. The order of the subscripts in the array declaration is
important. The first subscript gives the number of names in the
array, while the second subscript gives the length of each item in
the array.

Instead of initializing names, had these names been supplied from
the keyboard, the program segment would have looked like this...

for (i = 0 ; i <= 5 ; i++)
 scanf ("%s", &masterlist[i][0]) ;

346 Let Us C

While comparing the strings through strcmp(), note that the
addresses of the strings are being passed to strcmp(). As seen in
the last section, if the two strings match, strcmp() would return a
value 0, otherwise it would return a non-zero value.

The variable flag is used to keep a record of whether the control
did reach inside the if or not. To begin with, we set flag to
NOTFOUND. Later through the loop if the names match, flag is
set to FOUND. When the control reaches beyond the for loop, if
flag is still set to NOTFOUND, it means none of the names in the
masterlist[][] matched with the one supplied from the keyboard.

The names would be stored in the memory as shown in Figure 9.3.
Note that each string ends with a ‘\0’. The arrangement as you can
appreciate is similar to that of a two-dimensional numeric array.

65454 a k s h a y \0

65464 p a r a g \0

65474 r a m a n \0

65484 s r i n i v a s \0

65494 g o p a l \0

65504 r a j e s h \0 65513
(last location)

Figure 9.3

Chapter 9: Puppetting On Strings 347

Here, 65454, 65464, 65474, etc. are the base addresses of
successive names. As seen from the above pattern some of the
names do not occupy all the bytes reserved for them. For example,
even though 10 bytes are reserved for storing the name “akshay”,
it occupies only 7 bytes. Thus, 3 bytes go waste. Similarly, for
each name there is some amount of wastage. In fact, more the
number of names, more would be the wastage. Can this not be
avoided? Yes, it can be... by using what is called an ‘array of
pointers’, which is our next topic of discussion.

Array of Pointers to Strings

As we know, a pointer variable always contains an address.
Therefore, if we construct an array of pointers it would contain a
number of addresses. Let us see how the names in the earlier
example can be stored in the array of pointers.

char *names[] = {
 "akshay",
 "parag",
 "raman",
 "srinivas",
 "gopal",
 "rajesh"
 } ;

In this declaration names[] is an array of pointers. It contains base
addresses of respective names. That is, base address of “akshay” is
stored in names[0], base address of “parag” is stored in names[1]
and so on. This is depicted in Figure 9.4.

348 Let Us C

Figure 9.4

names[]

210 216 201 195 182 189

65514 65516 65518 65520 65524 65522

189

parag\0

216

rajesh\0

210

gopal\0

201

srinivas\0

195

raman\0

182

akshay\0

In the two-dimensional array of characters, the strings occupied 60
bytes. As against this, in array of pointers, the strings occupy only
41 bytes—a net saving of 19 bytes. A substantial saving, you
would agree. But realize that actually 19 bytes are not saved, since
12 bytes are sacrificed for storing the addresses in the array
names[]. Thus, one reason to store strings in an array of pointers
is to make a more efficient use of available memory.

Another reason to use an array of pointers to store strings is to
obtain greater ease in manipulation of the strings. This is shown by
the following programs. The first one uses a two-dimensional
array of characters to store the names, whereas the second uses an
array of pointers to strings. The purpose of both the programs is
very simple. We want to exchange the position of the names
“raman” and “srinivas”.

/* Exchange names using 2-D array of characters */
main()
{
 char names[][10] = {

Chapter 9: Puppetting On Strings 349

 "akshay",
 "parag",
 "raman",
 "srinivas",
 "gopal",
 "rajesh"
 } ;
 int i ;
 char t ;

 printf ("\nOriginal: %s %s", &names[2][0], &names[3][0]) ;

 for (i = 0 ; i <= 9 ; i++)
 {
 t = names[2][i] ;
 names[2][i] = names[3][i] ;
 names[3][i] = t ;
 }

 printf ("\nNew: %s %s", &names[2][0], &names[3][0]) ;
}

And here is the output...

Original: raman srinivas
New: srinivas raman

Note that in this program to exchange the names we are required to
exchange corresponding characters of the two names. In effect, 10
exchanges are needed to interchange two names.

Let us see, if the number of exchanges can be reduced by using an
array of pointers to strings. Here is the program...

main()
{
 char *names[] = {

350 Let Us C

 "akshay",
 "parag",
 "raman",
 "srinivas",
 "gopal",
 "rajesh"
 } ;
 char *temp ;

 printf ("Original: %s %s", names[2], names[3]) ;

 temp = names[2] ;
 names[2] = names[3] ;
 names[3] = temp ;

 printf ("\nNew: %s %s", names[2], names[3]) ;
}

And here is the output...

Original: raman srinivas
New: srinivas raman

The output is same as the earlier program. In this program all that
we are required to do is exchange the addresses (of the names)
stored in the array of pointers, rather than the names themselves.
Thus, by effecting just one exchange we are able to interchange
names. This makes handling strings very convenient.

Thus, from the point of view of efficient memory usage and ease
of programming, an array of pointers to strings definitely scores
over a two-dimensional character array. That is why, even though
in principle strings can be stored and handled through a two-
dimensional array of characters, in actual practice it is the array of
pointers to strings, which is more commonly used.

Chapter 9: Puppetting On Strings 351

Limitation of Array of Pointers to Strings

When we are using a two-dimensional array of characters we are
at liberty to either initialize the strings where we are declaring the
array, or receive the strings using scanf() function. However,
when we are using an array of pointers to strings we can initialize
the strings at the place where we are declaring the array, but we
cannot receive the strings from keyboard using scanf(). Thus, the
following program would never work out.

main()
{
 char *names[6] ;
 int i ;

 for (i = 0 ; i <= 5 ; i++)
 {
 printf ("\nEnter name ") ;
 scanf ("%s", names[i]) ;
 }
}

The program doesn’t work because; when we are declaring the
array it is containing garbage values. And it would be definitely
wrong to send these garbage values to scanf() as the addresses
where it should keep the strings received from the keyboard.

Solution

If we are bent upon receiving the strings from keyboard using
scanf() and then storing their addresses in an array of pointers to
strings we can do it in a slightly round about manner as shown
below.

#include "alloc.h"
main()

352 Let Us C

{
 char *names[6] ;
 char n[50] ;
 int len, i ;
 char *p ;

 for (i = 0 ; i <= 5 ; i++)
 {
 printf ("\nEnter name ") ;
 scanf ("%s", n) ;
 len = strlen (n) ;
 p = malloc (len + 1) ;
 strcpy (p, n) ;
 names[i] = p ;
 }

 for (i = 0 ; i <= 5 ; i++)
 printf ("\n%s", names[i]) ;
}

Here we have first received a name using scanf() in a string n[].
Then we have found out its length using strlen() and allocated
space for making a copy of this name. This memory allocation has
been done using a standard library function called malloc(). This
function requires the number of bytes to be allocated and returns
the base address of the chunk of memory that it allocates. The
address returned by this function is always of the type void *.
Hence it has been converted into char * using a feature called
typecasting. Typecasting is discussed in detail in Chapter 15. The
prototype of this function has been declared in the file ‘alloc.h’.
Hence we have #included this file.

But why did we not use array to allocate memory? This is because
with arrays we have to commit to the size of the array at the time
of writing the program. Moreover, there is no way to increase or
decrease the array size during execution of the program. In other
words, when we use arrays static memory allocation takes place.

Chapter 9: Puppetting On Strings 353

Unlike this, using malloc() we can allocate memory dynamically,
during execution. The argument that we pass to malloc() can be a
variable whose value can change during execution.

Once we have allocated the memory using malloc() we have
copied the name received through the keyboard into this allocated
space and finally stored the address of the allocated chunk in the
appropriate element of names[], the array of pointers to strings.

This solution suffers in performance because we need to allocate
memory and then do the copying of string for each name received
through the keyboard.

Summary
(a)

(b)

(c)

(d)
(e)

(f)

(g)

A string is nothing but an array of characters terminated by
‘\0’.
Being an array, all the characters of a string are stored in
contiguous memory locations.
Though scanf() can be used to receive multi-word strings,
gets() can do the same job in a cleaner way.
Both printf() and puts() can handle multi-word strings.
Strings can be operated upon using several standard library
functions like strlen(), strcpy(), strcat() and strcmp()
which can manipulate strings. More importantly we imitated
some of these functions to learn how these standard library
functions are written.
Though in principle a 2-D array can be used to handle several
strings, in practice an array of pointers to strings is preferred
since it takes less space and is efficient in processing strings.
malloc() function can be used to allocate space in memory on
the fly during execution of the program.

Exercise

Simple strings

354 Let Us C

[A] What would be the output of the following programs:

(a) main()

{
 char c[2] = "A" ;
 printf ("\n%c", c[0]) ;
 printf ("\n%s", c) ;
}

(b) main()
{
 char s[] = "Get organised! learn C!!" ;
 printf ("\n%s", &s[2]) ;
 printf ("\n%s", s) ;
 printf ("\n%s", &s) ;
 printf ("\n%c", s[2]) ;
}

(c) main()

{
 char s[] = "No two viruses work similarly" ;
 int i = 0 ;
 while (s[i] != 0)
 {
 printf ("\n%c %c", s[i], *(s + i)) ;
 printf ("\n%c %c", i[s], *(i + s)) ;
 i++ ;
 }
}

(d) main()
{
 char s[] = "Churchgate: no church no gate" ;
 char t[25] ;
 char *ss, *tt ;
 ss = s ;
 while (*ss != '\0')
 *ss++ = *tt++ ;

Chapter 9: Puppetting On Strings 355

 printf ("\n%s", t) ;
}

(e) main()
{
 char str1[] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’ } ;
 char str2[] = "Hello" ;

 printf ("\n%s", str1) ;
 printf ("\n%s", str2) ;
}

(f) main()
{
 printf (5 + "Good Morning ") ;
}

(g) main()
{
 printf ("%c", "abcdefgh"[4]) ;
}

(h) main()
{
 printf ("\n%d%d", sizeof (‘3’), sizeof ("3"), sizeof (3)) ;
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{
 char *str1 = "United" ;
 char *str2 = "Front" ;
 char *str3 ;
 str3 = strcat (str1, str2) ;
 printf ("\n%s", str3) ;
}

(b) main()
{

356 Let Us C

 int arr[] = { ‘A’, ‘B’, ‘C’, ‘D’ } ;
 int i ;
 for (i = 0 ; i <= 3 ; i++)
 printf ("\n%d", arr[i]) ;
}

(c) main()
{
 char arr[8] = "Rhombus" ;
 int i ;
 for (i = 0 ; i <= 7 ; i++)
 printf ("\n%d", *arr) ;
 arr++ ;
}

[C] Fill in the blanks:

(a)

(b)

(c)

(d)

(a)

(b)

"A" is a ___________ while ’A’ is a ____________.

A string is terminated by a ______ character, which is written
as ______.

The array char name[10] can consist of a maximum of
______ characters.

The array elements are always stored in _________ memory
locations.

[D] Attempt the following:

Which is more appropriate for reading in a multi-word string?

gets() printf() scanf() puts()

If the string "Alice in wonder land" is fed to the following
scanf() statement, what will be the contents of the arrays
str1, str2, str3 and str4?

 scanf ("%s%s%s%s%s", str1, str2, str3, str4) ;

Chapter 9: Puppetting On Strings 357

(c)

(d)

(e)

(f)

(a)

Write a program that converts all lowercase characters in a
given string to its equivalent uppercase character.

Write a program that extracts part of the given string from the
specified position. For example, if the sting is "Working with
strings is fun", then if from position 4, 4 characters are to be
extracted then the program should return string as "king".
Moreover, if the position from where the string is to be
extracted is given and the number of characters to be
extracted is 0 then the program should extract entire string
from the specified position.

Write a program that converts a string like "124" to an integer
124.

Write a program that replaces two or more consecutive blanks
in a string by a single blank. For example, if the input is

Grim return to the planet of apes!!

the output should be

Grim return to the planet of apes!!

Two-dimensional array, Array of pointers to strings

[E] Answer the following:

How many bytes in memory would be occupied by the
following array of pointers to strings? How many bytes would
be required to store the same strings, if they are stored in a
two-dimensional character array?

char *mess[] = {
 "Hammer and tongs",
 "Tooth and nail",

358 Let Us C

 "Spit and polish",
 "You and C"
 } ;

(b)

(a)

(b)

(c)

Can an array of pointers to strings be used to collect strings
from the keyboard? If not, why not?

[F] Attempt the following:

Write a program that uses an array of pointers to strings str[].
Receive two strings str1 and str2 and check if str1 is
embedded in any of the strings in str[]. If str1 is found, then
replace it with str2.

char *str[] = {
 "We will teach you how to...",
 "Move a mountain",
 "Level a building",
 "Erase the past",
 "Make a million",
 "...all through C!"
 } ;

For example if str1 contains "mountain" and str2 contains
"car", then the second string in str should get changed to
"Move a car".

Write a program to sort a set of names stored in an array in
alphabetical order.

Write a program to reverse the strings stored in the following
array of pointers to strings:

char *s[] = {
 "To err is human...",
 "But to really mess things up...",
 "One needs to know C!!"
 } ;

Chapter 9: Puppetting On Strings 359

Hint: Write a function xstrrev (string) which should reverse
the contents of one string. Call this function for reversing each
string stored in s.

(d) Develop a program that receives the month and year from the
keyboard as integers and prints the calendar in the following
format.

 September 2004

 Mon Tue Wed Thu Fri Sat Sun
 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30

Note that according to the Gregorian calendar 01/01/1900 was
Monday. With this as the base the calendar should be
generated.

(e) Modify the above program suitably so that once the calendar
for a particular month and year has been displayed on the

360 Let Us C

screen, then using arrow keys the user must be able to change
the calendar in the following manner:

Up arrow key : Next year, same month
Down arrow key : Previous year, same month
Right arrow key : Same year, next month
Left arrow key : Same year, previous month

If the escape key is hit then the procedure should stop.

Hint: Use the getkey() function discussed in Chapter 8,
problem number [L](c).

(f)

(g)

(h)

(i)

A factory has 3 division and stocks 4 categories of products.
An inventory table is updated for each division and for each
product as they are received. There are three independent
suppliers of products to the factory:

(a) Design a data format to represent each transaction.
(b) Write a program to take a transaction and update the

inventory.
(c) If the cost per item is also given write a program to

calculate the total inventory values.

A dequeue is an ordered set of elements in which elements
may be inserted or retrieved from either end. Using an array
simulate a dequeue of characters and the operations retrieve
left, retrieve right, insert left, insert right. Exceptional
conditions such as dequeue full or empty should be indicated.
Two pointers (namely, left and right) are needed in this
simulation.

Write a program to delete all vowels from a sentence. Assume
that the sentence is not more than 80 characters long.

Write a program that will read a line and delete from it all
occurrences of the word ‘the’.

Chapter 9: Puppetting On Strings 361

(j)

(k)

Write a program that takes a set of names of individuals and
abbreviates the first, middle and other names except the last
name by their first letter.

Write a program to count the number of occurrences of any
two vowels in succession in a line of text. For example, in the
sentence

“Pleases read this application and give me gratuity”

such occurrences are ea, ea, ui.

10 Structures

• Why Use Structures

Declaring a Structure
Accessing Structure Elements
How Structure Elements are Stored

• Array of Structures
• Additional Features of Structures
• Uses of Structures
• Summary
• Exercise

363

364 Let Us C

hich mechanic is good enough who knows how to repair
only one type of vehicle? None. Same thing is true about
C language. It wouldn’t have been so popular had it been

able to handle only all ints, or all floats or all chars at a time. In
fact when we handle real world data, we don’t usually deal with
little atoms of information by themselves—things like integers,
characters and such. Instead we deal with entities that are
collections of things, each thing having its own attributes, just as
the entity we call a ‘book’ is a collection of things such as title,
author, call number, publisher, number of pages, date of
publication, etc. As you can see all this data is dissimilar, for
example author is a string, whereas number of pages is an integer.
For dealing with such collections, C provides a data type called
‘structure’. A structure gathers together, different atoms of
information that comprise a given entity. And structure is the topic
of this chapter.

W

Why Use Structures
We have seen earlier how ordinary variables can hold one piece of
information and how arrays can hold a number of pieces of
information of the same data type. These two data types can
handle a great variety of situations. But quite often we deal with
entities that are collection of dissimilar data types.

For example, suppose you want to store data about a book. You
might want to store its name (a string), its price (a float) and
number of pages in it (an int). If data about say 3 such books is to
be stored, then we can follow two approaches:

(a)

(b)

Construct individual arrays, one for storing names, another for
storing prices and still another for storing number of pages.

Use a structure variable.

Let us examine these two approaches one by one. For the sake of
programming convenience assume that the names of books would

Chapter 10: Structures 365

be single character long. Let us begin with a program that uses
arrays.

main()
{
 char name[3] ;
 float price[3] ;
 int pages[3], i ;

 printf ("\nEnter names, prices and no. of pages of 3 books\n") ;

 for (i = 0 ; i <= 2 ; i++)
 scanf ("%c %f %d", &name[i], &price[i], &pages[i]);

 printf ("\nAnd this is what you entered\n") ;
 for (i = 0 ; i <= 2 ; i++)
 printf ("%c %f %d\n", name[i], price[i], pages[i]);
}

And here is the sample run...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 233.70 512

And this is what you entered
A 100.000000 354
C 256.500000 682
F 233.700000 512

This approach no doubt allows you to store names, prices and
number of pages. But as you must have realized, it is an unwieldy
approach that obscures the fact that you are dealing with a group
of characteristics related to a single entity—the book.

366 Let Us C

The program becomes more difficult to handle as the number of
items relating to the book go on increasing. For example, we
would be required to use a number of arrays, if we also decide to
store name of the publisher, date of purchase of book, etc. To solve
this problem, C provides a special data type—the structure.

A structure contains a number of data types grouped together.
These data types may or may not be of the same type. The
following example illustrates the use of this data type.

main()
{
 struct book
 {
 char name ;
 float price ;
 int pages ;
 } ;
 struct book b1, b2, b3 ;

 printf ("\nEnter names, prices & no. of pages of 3 books\n") ;
 scanf ("%c %f %d", &b1.name, &b1.price, &b1.pages) ;
 scanf ("%c %f %d", &b2.name, &b2.price, &b2.pages) ;
 scanf ("%c %f %d", &b3.name, &b3.price, &b3.pages) ;

 printf ("\nAnd this is what you entered") ;
 printf ("\n%c %f %d", b1.name, b1.price, b1.pages) ;
 printf ("\n%c %f %d", b2.name, b2.price, b2.pages) ;
 printf ("\n%c %f %d", b3.name, b3.price, b3.pages) ;
}

And here is the output...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 233.70 512

Chapter 10: Structures 367

And this is what you entered
A 100.000000 354
C 256.500000 682
F 233.700000 512

This program demonstrates two fundamental aspects of structures:

(a) declaration of a structure
(b) accessing of structure elements

Let us now look at these concepts one by one.

Declaring a Structure

In our example program, the following statement declares the
structure type:

struct book
{
 char name ;
 float price ;
 int pages ;
} ;

This statement defines a new data type called struct book. Each
variable of this data type will consist of a character variable called
name, a float variable called price and an integer variable called
pages. The general form of a structure declaration statement is
given below:

struct <structure name>
{
 structure element 1 ;
 structure element 2 ;
 structure element 3 ;

368 Let Us C

} ;

Once the new structure data type has been defined one or more
variables can be declared to be of that type. For example the
variables b1, b2, b3 can be declared to be of the type struct book,
as,

struct book b1, b2, b3 ;

This statement sets aside space in memory. It makes available
space to hold all the elements in the structure—in this case, 7
bytes—one for name, four for price and two for pages. These
bytes are always in adjacent memory locations.

If we so desire, we can combine the declaration of the structure
type and the structure variables in one statement.

For example,

struct book
{
 char name ;
 float price ;
 int pages ;
} ;
struct book b1, b2, b3 ;

is same as...

struct book
{
 char name ;
 float price ;
 int pages ;
} b1, b2, b3 ;
or even...

struct

Chapter 10: Structures 369

{
 char name ;
 float price ;
 int pages ;
} b1, b2, b3 ;

Like primary variables and arrays, structure variables can also be
initialized where they are declared. The format used is quite
similar to that used to initiate arrays.

struct book
{
 char name[10] ;
 float price ;
 int pages ;
} ;
struct book b1 = { "Basic", 130.00, 550 } ;
struct book b2 = { "Physics", 150.80, 800 } ;

Note the following points while declaring a structure type:

(a)

(b)

(c)

The closing brace in the structure type declaration must be
followed by a semicolon.
It is important to understand that a structure type declaration
does not tell the compiler to reserve any space in memory. All
a structure declaration does is, it defines the ‘form’ of the
structure.
Usually structure type declaration appears at the top of the
source code file, before any variables or functions are defined.
In very large programs they are usually put in a separate
header file, and the file is included (using the preprocessor
directive #include) in whichever program we want to use this
structure type.

370 Let Us C

Accessing Structure Elements

Having declared the structure type and the structure variables, let
us see how the elements of the structure can be accessed.

In arrays we can access individual elements of an array using a
subscript. Structures use a different scheme. They use a dot (.)
operator. So to refer to pages of the structure defined in our
sample program we have to use,

b1.pages

Similarly, to refer to price we would use,

b1.price

Note that before the dot there must always be a structure variable
and after the dot there must always be a structure element.

How Structure Elements are Stored

Whatever be the elements of a structure, they are always stored in
contiguous memory locations. The following program would
illustrate this:

/* Memory map of structure elements */
main()
{
 struct book
 {
 char name ;
 float price ;
 int pages ;
 } ;
 struct book b1 = { 'B', 130.00, 550 } ;

 printf ("\nAddress of name = %u", &b1.name) ;

Chapter 10: Structures 371

 printf ("\nAddress of price = %u", &b1.price) ;
 printf ("\nAddress of pages = %u", &b1.pages) ;
}

Here is the output of the program...

Address of name = 65518
Address of price = 65519
Address of pages = 65523

Actually the structure elements are stored in memory as shown in
the Figure 10.1.

65518 65519 65523

‘B’ 550130.00

b1.priceb1.name b1.pages

Figure 10.1

Array of Structures
Our sample program showing usage of structure is rather simple
minded. All it does is, it receives values into various structure
elements and output these values. But that’s all we intended to do
anyway... show how structure types are created, how structure
variables are declared and how individual elements of a structure
variable are referenced.

In our sample program, to store data of 100 books we would be
required to use 100 different structure variables from b1 to b100,
which is definitely not very convenient. A better approach would
be to use an array of structures. Following program shows how to
use an array of structures.

372 Let Us C

/* Usage of an array of structures */
main()
{
 struct book
 {
 char name ;
 float price ;
 int pages ;
 } ;

 struct book b[100] ;
 int i ;

 for (i = 0 ; i <= 99 ; i++)
 {
 printf ("\nEnter name, price and pages ") ;
 scanf ("%c %f %d", &b[i].name, &b[i].price, &b[i].pages) ;
 }

 for (i = 0 ; i <= 99 ; i++)
 printf ("\n%c %f %d", b[i].name, b[i].price, b[i].pages) ;
}

linkfloat()
{
 float a = 0, *b ;
 b = &a ; /* cause emulator to be linked */
 a = *b ; /* suppress the warning - variable not used */
}

Now a few comments about the program:

(a) Notice how the array of structures is declared...

struct book b[100] ;

Chapter 10: Structures 373

This provides space in memory for 100 structures of the type
struct book.

(b) The syntax we use to reference each element of the array b is
similar to the syntax used for arrays of ints and chars. For
example, we refer to zeroth book’s price as b[0].price.
Similarly, we refer first book’s pages as b[1].pages.

(c) It should be appreciated what careful thought Dennis Ritchie
has put into C language. He first defined array as a collection
of similar elements; then realized that dissimilar data types
that are often found in real life cannot be handled using
arrays, therefore created a new data type called structure. But
even using structures programming convenience could not be
achieved, because a lot of variables (b1 to b100 for storing
data about hundred books) needed to be handled. Therefore he
allowed us to create an array of structures; an array of similar
data types which themselves are a collection of dissimilar data
types. Hats off to the genius!

(d)

(e)

In an array of structures all elements of the array are stored in
adjacent memory locations. Since each element of this array is
a structure, and since all structure elements are always stored
in adjacent locations you can very well visualise the
arrangement of array of structures in memory. In our example,
b[0]’s name, price and pages in memory would be
immediately followed by b[1]’s name, price and pages, and
so on.

What is the function linkfloat() doing here? If you don’t
define it you are bound to get the error "Floating Point
Formats Not Linked" with majority of C Compilers. What
causes this error to occur? When parsing our source file, if the
compiler encounters a reference to the address of a float, it
sets a flag to have the linker link in the floating-point
emulator. A floating point emulator is used to manipulate
floating point numbers in runtime library functions like

374 Let Us C

scanf() and atof(). There are some cases in which the
reference to the float is a bit obscure and the compiler does
not detect the need for the emulator. The most common is
using scanf() to read a float in an array of structures as
shown in our program.

How can we force the formats to be linked? That’s where the
linkfloat() function comes in. It forces linking of the
floating-point emulator into an application. There is no need
to call this function, just define it anywhere in your program.

Additional Features of Structures
Let us now explore the intricacies of structures with a view of
programming convenience. We would highlight these intricacies
with suitable examples:

(a) The values of a structure variable can be assigned to another
structure variable of the same type using the assignment
operator. It is not necessary to copy the structure elements
piece-meal. Obviously, programmers prefer assignment to
piece-meal copying. This is shown in the following example.

main()
{
 struct employee
 {
 char name[10] ;
 int age ;
 float salary ;
 } ;
 struct employee e1 = { "Sanjay", 30, 5500.50 } ;
 struct employee e2, e3 ;

 /* piece-meal copying */
 strcpy (e2.name, e1.name) ;
 e2.age = e1.age ;

Chapter 10: Structures 375

 e2.salary = e1.salary ;

 /* copying all elements at one go */
 e3 = e2 ;

 printf ("\n%s %d %f", e1.name, e1.age, e1.salary) ;
 printf ("\n%s %d %f", e2.name, e2.age, e2.salary) ;
 printf ("\n%s %d %f", e3.name, e3.age, e3.salary) ;
}

The output of the program would be...

Sanjay 30 5500.500000
Sanjay 30 5500.500000
Sanjay 30 5500.500000

Ability to copy the contents of all structure elements of one
variable into the corresponding elements of another structure
variable is rather surprising, since C does not allow assigning
the contents of one array to another just by equating the two.
As we saw earlier, for copying arrays we have to copy the
contents of the array element by element.

This copying of all structure elements at one go has been
possible only because the structure elements are stored in
contiguous memory locations. Had this not been so, we would
have been required to copy structure variables element by
element. And who knows, had this been so, structures would
not have become popular at all.

(b) One structure can be nested within another structure. Using
this facility complex data types can be created. The following
program shows nested structures at work.

main()
{
 struct address

376 Let Us C

 {
 char phone[15] ;
 char city[25] ;
 int pin ;
 } ;

 struct emp
 {
 char name[25] ;
 struct address a ;
 } ;
 struct emp e = { "jeru", "531046", "nagpur", 10 };

 printf ("\nname = %s phone = %s", e.name, e.a.phone) ;
 printf ("\ncity = %s pin = %d", e.a.city, e.a.pin) ;
}

And here is the output...

name = jeru phone = 531046
city = nagpur pin = 10

Notice the method used to access the element of a structure
that is part of another structure. For this the dot operator is
used twice, as in the expression,

e.a.pin or e.a.city

Of course, the nesting process need not stop at this level. We
can nest a structure within a structure, within another
structure, which is in still another structure and so on... till the
time we can comprehend the structure ourselves. Such
construction however gives rise to variable names that can be
surprisingly self descriptive, for example:

maruti.engine.bolt.large.qty

Chapter 10: Structures 377

This clearly signifies that we are referring to the quantity of
large sized bolts that fit on an engine of a maruti car.

(c) Like an ordinary variable, a structure variable can also be
passed to a function. We may either pass individual structure
elements or the entire structure variable at one go. Let us
examine both the approaches one by one using suitable
programs.

/* Passing individual structure elements */
main()
{
 struct book
 {
 char name[25] ;
 char author[25] ;
 int callno ;
 } ;
 struct book b1 = { "Let us C", "YPK", 101 } ;

 display (b1.name, b1.author, b1.callno) ;
}

display (char *s, char *t, int n)
{
 printf ("\n%s %s %d", s, t, n) ;
}

And here is the output...

Let us C YPK 101

Observe that in the declaration of the structure, name and
author have been declared as arrays. Therefore, when we call
the function display() using,

display (b1.name, b1.author, b1.callno) ;

378 Let Us C

we are passing the base addresses of the arrays name and
author, but the value stored in callno. Thus, this is a mixed
call—a call by reference as well as a call by value.

It can be immediately realized that to pass individual elements
would become more tedious as the number of structure
elements go on increasing. A better way would be to pass the
entire structure variable at a time. This method is shown in the
following program.

struct book
{
 char name[25] ;
 char author[25] ;
 int callno ;
} ;

main()
{
 struct book b1 = { "Let us C", "YPK", 101 } ;
 display (b1) ;
}

display (struct book b)
{
 printf ("\n%s %s %d", b.name, b.author, b.callno) ;
}

And here is the output...

Let us C YPK 101

Note that here the calling of function display() becomes quite
compact,

display (b1) ;

Chapter 10: Structures 379

Having collected what is being passed to the display()
function, the question comes, how do we define the formal
arguments in the function. We cannot say,

struct book b1 ;

because the data type struct book is not known to the
function display(). Therefore, it becomes necessary to define
the structure type struct book outside main(), so that it
becomes known to all functions in the program.

(d) The way we can have a pointer pointing to an int, or a pointer
pointing to a char, similarly we can have a pointer pointing to
a struct. Such pointers are known as ‘structure pointers’.

Let us look at a program that demonstrates the usage of a
structure pointer.

main()
{
 struct book
 {
 char name[25] ;
 char author[25] ;
 int callno ;
 } ;
 struct book b1 = { "Let us C", "YPK", 101 } ;
 struct book *ptr ;

 ptr = &b1 ;
 printf ("\n%s %s %d", b1.name, b1.author, b1.callno) ;
 printf ("\n%s %s %d", ptr->name, ptr->author, ptr->callno) ;
}

The first printf() is as usual. The second printf() however is
peculiar. We can’t use ptr.name or ptr.callno because ptr is
not a structure variable but a pointer to a structure, and the dot

380 Let Us C

operator requires a structure variable on its left. In such cases
C provides an operator ->, called an arrow operator to refer to
the structure elements. Remember that on the left hand side of
the ‘.’ structure operator, there must always be a structure
variable, whereas on the left hand side of the ‘->’ operator
there must always be a pointer to a structure. The arrangement
of the structure variable and pointer to structure in memory is
shown in the Figure 10.2.

655226549765472

b1.name b1.author b1.callno
101 YPK Let Us C

ptr

65524

65472

 Figure 10.2

Can we not pass the address of a structure variable to a
function? We can. The following program demonstrates this.

/* Passing address of a structure variable */
struct book
{
 char name[25] ;
 char author[25] ;
 int callno ;
} ;

main()
{
 struct book b1 = { "Let us C", "YPK", 101 } ;
 display (&b1) ;

Chapter 10: Structures 381

}

display (struct book *b)
{
 printf ("\n%s %s %d", b->name, b->author, b->callno) ;
}

And here is the output...

Let us C YPK 101

Again note that to access the structure elements using pointer
to a structure we have to use the ‘->’ operator.

Also, the structure struct book should be declared outside
main() such that this data type is available to display() while
declaring pointer to the structure.

(e) Consider the following code snippet:

struct emp
{
 int a ;
 char ch ;
 float s ;
} ;
struct emp e ;
printf ("%u %u %u", &e.a, &e.ch, &e.s) ;

If we execute this program using TC/TC++ compiler we get
the addresses as:

65518 65520 65521

As expected, in memory the char begins immediately after
the int and float begins immediately after the char.

382 Let Us C

However, if we run the same program using VC++ compiler
then the output turns out to be:

1245044 1245048 1245052

It can be observed from this output that the float doesn’t get
stored immediately after the char. In fact there is a hole of
three bytes after the char. Let us understand the reason for
this. VC++ is a 32-bit compiler targeted to generate code for a
32-bit microprocessor. The architecture of this microprocessor
is such that it is able to fetch the data that is present at an
address, which is a multiple of four much faster than the data
present at any other address. Hence the VC++ compiler aligns
every element of a structure at an address that is multiple of
four. That’s the reason why there were three holes created
between the char and the float.

However, some programs need to exercise precise control
over the memory areas where data is placed. For example,
suppose we wish to read the contents of the boot sector (first
sector on the floppy/hard disk) into a structure. For this the
byte arrangement of the structure elements must match the
arrangement of various fields in the boot sector of the disk.
The #pragma pack directive offers a way to fulfill this
requirement. This directive specifies packing alignment for
structure members. The pragma takes effect at the first
structure declaration after the pragma is seen. Turbo C/C++
compiler doesn’t support this feature, VC++ compiler does.
The following code shows how to use this directive.

#pragma pack(1)
struct emp
{
 int a ;
 char ch ;
 float s ;
} ;

Chapter 10: Structures 383

#pragma pack()

struct emp e ;
printf ("%u %u %u", &e.a, &e.ch, &e.s) ;

Here, #pragma pack (1) lets each structure element to begin
on a 1-byte boundary as justified by the output of the program
given below:

1245044 1245048 1245049

Uses of Structures
Where are structures useful? The immediate application that
comes to the mind is Database Management. That is, to maintain
data about employees in an organization, books in a library, items
in a store, financial accounting transactions in a company etc. But
mind you, use of structures stretches much beyond database
management. They can be used for a variety of purposes like:

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)

Changing the size of the cursor
Clearing the contents of the screen
Placing the cursor at an appropriate position on screen
Drawing any graphics shape on the screen
Receiving a key from the keyboard
Checking the memory size of the computer
Finding out the list of equipment attached to the computer
Formatting a floppy
Hiding a file from the directory
Displaying the directory of a disk
Sending the output to printer
Interacting with the mouse

And that is certainly a very impressive list! At least impressive
enough to make you realize how important a data type a structure
is and to be thorough with it if you intend to program any of the

384 Let Us C

above applications. Some of these applications would be discussed
in Chapters 16 to 19.

Summary
(a)

(b)

(c)

(d)

(e)

(f)

A structure is usually used when we wish to store dissimilar
data together.
Structure elements can be accessed through a structure
variable using a dot (.) operator.
Structure elements can be accessed through a pointer to a
structure using the arrow (->) operator.
All elements of one structure variable can be assigned to
another structure variable using the assignment (=) operator.
It is possible to pass a structure variable to a function either
by value or by address.
It is possible to create an array of structures.

Exercise

[A] What would be the output of the following programs:

(a) main()
{
 struct gospel
 {
 int num ;
 char mess1[50] ;
 char mess2[50] ;
 } m ;

 m.num = 1 ;
 strcpy (m.mess1, "If all that you have is hammer") ;
 strcpy (m.mess2, "Everything looks like a nail") ;

 /* assume that the strucure is located at address 1004 */
 printf ("\n%u %u %u", &m.num, m.mess1, m.mess2) ;
}

Chapter 10: Structures 385

(b) struct gospel

{
 int num ;
 char mess1[50] ;
 char mess2[50] ;
} m1 = { 2, "If you are driven by success",
 "make sure that it is a quality drive"
 } ;
main()
{
 struct gospel m2, m3 ;
 m2 = m1 ;
 m3 = m2 ;
 printf ("\n%d %s %s", m1.num, m2.mess1, m3.mess2) ;
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{
 struct employee
 {
 char name[25] ;
 int age ;
 float bs ;
 } ;
 struct employee e ;
 strcpy (e.name, "Hacker") ;
 age = 25 ;
 printf ("\n%s %d", e.name, age) ;
}

(b) main()
{
 struct
 {
 char name[25] ;

386 Let Us C

 char language[10] ;
 } ;
 struct employee e = { "Hacker", "C" } ;
 printf ("\n%s %d", e.name, e.language) ;
}

(c) struct virus
{

 char signature[25] ;
 char status[20] ;
 int size ;
} v[2] = {
 "Yankee Doodle", "Deadly", 1813,
 "Dark Avenger", "Killer", 1795
 } ;
main()
{
 int i ;
 for (i = 0 ; i <=1 ; i++)
 printf ("\n%s %s", v.signature, v.status) ;
}

(d) struct s
{
 char ch ;
 int i ;
 float a ;
} ;
main()
{
 struct s var = { 'C', 100, 12.55 } ;
 f (var) ;
 g (&var) ;
}
f (struct s v)
{
 printf ("\n%c %d %f", v -> ch, v -> i, v -> a) ;
}

Chapter 10: Structures 387

g (struct s *v)
{
 printf ("\n%c %d %f", v.ch, v.i, v.a) ;
}

(e) struct s
{
 int i ;
 struct s *p ;
} ;
main()
{
 struct s var1, var2 ;

 var1.i = 100 ;
 var2.i = 200 ;
 var1.p = &var2 ;
 var2.p = &var1 ;
 printf ("\n%d %d", var1.p -> i, var2.p -> i) ;
}

[C] Answer the following:

(a) Ten floats are to be stored in memory. What would you

prefer, an array or a structure?

(b) Given the statement,

maruti.engine.bolts = 25 ;
which of the following is True?

1. structure bolts is nested within structure engine
2. structure engine is nested within structure maruti
3. structure maruti is nested within structure engine
4. structure maruti is nested within structure bolts

(c) State True or False:

1. All structure elements are stored in contiguous memory
locations.

388 Let Us C

2. An array should be used to store dissimilar elements, and
a structure to store similar elements.

3. In an array of structures, not only are all structures stored
in contiguous memory locations, but the elements of
individual structures are also stored in contiguous
locations.

(d) struct time
{
 int hours ;
 int minutes ;
 int seconds ;
} t ;
struct time *tt ;
tt = &t ;

Looking at the above declarations, which of the following
refers to seconds correctly:

1. tt.seconds
2. (*tt).seconds
3. time.t
4. tt -> seconds

[D] Attempt the following:

(a) Create a structure to specify data on students given below:

Roll number, Name, Department, Course, Year of joining

Assume that there are not more than 450 students in the
collage.

(a) Write a function to print names of all students who joined
in a particular year.

(b) Write a function to print the data of a student whose roll
number is given.

Chapter 10: Structures 389

(b) Create a structure to specify data of customers in a bank. The
data to be stored is: Account number, Name, Balance in
account. Assume maximum of 200 customers in the bank.
(a) Write a function to print the Account number and name

of each customer with balance below Rs. 100.

(b) If a customer request for withdrawal or deposit, it is
given in the form:

Acct. no, amount, code (1 for deposit, 0 for withdrawal)

Write a program to give a message, “The balance is
insufficient for the specified withdrawal”.

(c) An automobile company has serial number for engine parts
starting from AA0 to FF9. The other characteristics of parts to
be specified in a structure are: Year of manufacture, material
and quantity manufactured.
(a) Specify a structure to store information corresponding to

a part.
(b) Write a program to retrieve information on parts with

serial numbers between BB1 and CC6.

(d) A record contains name of cricketer, his age, number of test
matches that he has played and the average runs that he has
scored in each test match. Create an array of structure to hold
records of 20 such cricketer and then write a program to read
these records and arrange them in ascending order by average
runs. Use the qusort() standard library function.

(e) There is a structure called employee that holds information
like employee code, name, date of joining. Write a program to
create an array of the structure and enter some data into it.
Then ask the user to enter current date. Display the names of
those employees whose tenure is 3 or more than 3 years
according to the given current date.

(f) Write a menu driven program that depicts the working of a

library. The menu options should be:

390 Let Us C

1. Add book information
2. Display book information
3. List all books of given author
4. List the title of specified book
5. List the count of books in the library
6. List the books in the order of accession number
7. Exit

Create a structure called library to hold accession number,
title of the book, author name, price of the book, and flag
indicating whether book is issued or not.

(g) Write a program that compares two given dates. To store date
use structure say date that contains three members namely
date, month and year. If the dates are equal then display
message as "Equal" otherwise "Unequal".

(h) Linked list is a very common data structure often used to store

similar data in memory. While the elements of an array
occupy contiguous memory locations, those of a linked list
are not constrained to be stored in adjacent location. The
individual elements are stored “somewhere” in memory,
rather like a family dispersed, but still bound together. The
order of the elements is maintained by explicit links between
them. Thus, a linked list is a collection of elements called
nodes, each of which stores two item of information—an
element of the list, and a link, i.e., a pointer or an address that
indicates explicitly the location of the node containing the
successor of this list element.

Write a program to build a linked list by adding new nodes at
the beginning, at the end or in the middle of the linked list.
Also write a function display() which display all the nodes
present in the linked list.

(i) A stack is a data structure in which addition of new element
or deletion of existing element always takes place at the same

Chapter 10: Structures 391

end. This end is often known as ‘top’ of stack. This situation
can be compared to a stack of plates in a cafeteria where every
new plate taken off the stack is also from the ‘top’ of the
stack. There are several application where stack can be put to
use. For example, recursion, keeping track of function calls,
evaluation of expressions, etc. Write a program to implement
a stack using a linked list.

(j) Unlike a stack, in a queue the addition of new element takes
place at the end (called ‘rear’ of queue) whereas deletion takes
place at the other end (called ‘front’ of queue). Write a
program to implement a queue using a linked list.

392 Let Us C

11 Console
 Input/Output

• Types of I/O
• Console I/O Functions

Formatted Console I/O Functions
sprintf() and sscanf() Functions
Unformatted Console I/O Functions

• Summary
• Exercise

393

394 Let Us C

s mentioned in the first chapter, Dennis Ritchie wanted C
to remain compact. In keeping with this intention he
deliberately omitted everything related with Input/Output

(I/O) from his definition of the language. Thus, C simply has no
provision for receiving data from any of the input devices (like say
keyboard, disk, etc.), or for sending data to the output devices (like
say VDU, disk, etc.). Then how do we manage I/O, and how is it
that we were we able to use printf() and scanf() if C has nothing
to offer for I/O? This is what we intend to explore in this chapter.

A

Types of I/O
Though C has no provision for I/O, it of course has to be dealt with
at some point or the other. There is not much use writing a
program that spends all its time telling itself a secret. Each
Operating System has its own facility for inputting and outputting
data from and to the files and devices. It’s a simple matter for a
system programmer to write a few small programs that would link
the C compiler for particular Operating system’s I/O facilities.

The developers of C Compilers do just that. They write several
standard I/O functions and put them in libraries. These libraries are
available with all C compilers. Whichever C compiler you are
using it’s almost certain that you have access to a library of I/O
functions.

Do understand that the I/O facilities with different operating
systems would be different. Thus, the way one OS displays output
on screen may be different than the way another OS does it. For
example, the standard library function printf() for DOS-based C
compiler has been written keeping in mind the way DOS outputs
characters to screen. Similarly, the printf() function for a Unix-
based compiler has been written keeping in mind the way Unix
outputs characters to screen. We as programmers do not have to
bother about which printf() has been written in what manner. We
should just use printf() and it would take care of the rest of the

Chapter 11: Console Input/Output 395

details that are OS dependent. Same is true about all other standard
library functions available for I/O.

There are numerous library functions available for I/O. These can
be classified into three broad categories:

(a) Console I/O functions - Functions to receive input
from keyboard and write
output to VDU.

(b) File I/O functions - Functions to perform I/O
operations on a floppy disk or
hard disk.

In this chapter we would be discussing only Console I/O functions.
File I/O functions would be discussed in Chapter 12.

Console I/O Functions
The screen and keyboard together are called a console. Console
I/O functions can be further classified into two categories—
formatted and unformatted console I/O functions. The basic
difference between them is that the formatted functions allow the
input read from the keyboard or the output displayed on the VDU
to be formatted as per our requirements. For example, if values of
average marks and percentage marks are to be displayed on the
screen, then the details like where this output would appear on the
screen, how many spaces would be present between the two
values, the number of places after the decimal points, etc. can be
controlled using formatted functions. The functions available
under each of these two categories are shown in Figure 11.1. Now
let us discuss these console I/O functions in detail.

396 Let Us C

 Console Input/Output functions

 Formatted functions Unformatted functions

 Type Input Output Type Input Output

 char scanf() printf() char getch()
getche()
getchar()

putch()
putchar()

 int scanf() printf() int - -
 float scanf() printf() float - -
 string scanf() printf() string gets() puts()

Figure 11.1

Formatted Console I/O Functions

As can be seen from Figure 11.1 the functions printf(), and
scanf() fall under the category of formatted console I/O functions.
These functions allow us to supply the input in a fixed format and
let us obtain the output in the specified form. Let us discuss these
functions one by one.

We have talked a lot about printf(), used it regularly, but without
having introduced it formally. Well, better late than never. Its
general form looks like this...

printf ("format string", list of variables) ;

The format string can contain:

Characters that are simply printed as they are
Conversion specifications that begin with a % sign

(a)
(b)

Chapter 11: Console Input/Output 397

(c) Escape sequences that begin with a \ sign

For example, look at the following program:

main()
{
 int avg = 346 ;
 float per = 69.2 ;
 printf ("Average = %d\nPercentage = %f", avg, per) ;
}

The output of the program would be...
Average = 346
Percentage = 69.200000
How does printf() function interpret the contents of the format
string. For this it examines the format string from left to right. So
long as it doesn’t come across either a % or a \ it continues to
dump the characters that it encounters, on to the screen. In this
example Average = is dumped on the screen. The moment it
comes across a conversion specification in the format string it
picks up the first variable in the list of variables and prints its value
in the specified format. In this example, the moment %d is met the
variable avg is picked up and its value is printed. Similarly, when
an escape sequence is met it takes the appropriate action. In this
example, the moment \n is met it places the cursor at the beginning
of the next line. This process continues till the end of format string
is not reached.

Format Specifications

The %d and %f used in the printf() are called format specifiers.
They tell printf() to print the value of avg as a decimal integer
and the value of per as a float. Following is the list of format
specifiers that can be used with the printf() function.

398 Let Us C

 Data type Format specifier

 Integer short signed %d or %I
 short unsigned %u
 long singed %ld
 long unsigned %lu
 unsigned hexadecimal %x
 unsigned octal %o
 Real float %f
 double %lf
 Character signed character %c
 unsigned character %c
 String %s

Figure 11.2

We can provide following optional specifiers in the format
specifications.

 Specifier Description

 dd Digits specifying field width
 . Decimal point separating field width from precision

(precision stands for the number of places after the
decimal point)

 dd Digits specifying precision
 - Minus sign for left justifying the output in the

specified field width

Figure 11.3

Chapter 11: Console Input/Output 399

Now a short explanation about these optional format specifiers.
The field-width specifier tells printf() how many columns on
screen should be used while printing a value. For example, %10d
says, “print the variable as a decimal integer in a field of 10
columns”. If the value to be printed happens not to fill up the
entire field, the value is right justified and is padded with blanks
on the left. If we include the minus sign in format specifier (as in
%-10d), this means left justification is desired and the value will
be padded with blanks on the right. Here is an example that should
make this point clear.

main()
{
 int weight = 63 ;

 printf ("\nweight is %d kg", weight) ;
 printf ("\nweight is %2d kg", weight) ;
 printf ("\nweight is %4d kg", weight) ;
 printf ("\nweight is %6d kg", weight) ;
 printf ("\nweight is %-6d kg", weight) ;
}

The output of the program would look like this ...

Columns 0123456789012345678901234567890
 weight is 63 kg
 weight is 63 kg
 weight is 63 kg
 weight is 63 kg
 weight is 63 kg

Specifying the field width can be useful in creating tables of
numeric values, as the following program demonstrates.

main()
{
 printf ("\n%f %f %f", 5.0, 13.5, 133.9) ;

400 Let Us C

 printf ("\n%f %f %f", 305.0, 1200.9, 3005.3) ;
}

And here is the output...

5.000000 13.500000 133.900000
305.000000 1200.900000 3005.300000

Even though the numbers have been printed, the numbers have not
been lined up properly and hence are hard to read. A better way
would be something like this...

main()
{
 printf ("\n%10.1f %10.1f %10.1f", 5.0, 13.5, 133.9) ;
 printf ("\n%10.1f %10.1f %10.1f", 305.0, 1200.9, 3005.3);
}

This results into a much better output...

01234567890123456789012345678901
 5.0 13.5 133.9
 305.0 1200.9 3005.3

The format specifiers could be used even while displaying a string
of characters. The following program would clarify this point:

/* Formatting strings with printf() */
main()
{
 char firstname1[] = "Sandy" ;
 char surname1[] = "Malya" ;
 char firstname2[] = "AjayKumar" ;
 char surname2[] = "Gurubaxani" ;

 printf ("\n%20s%20s", firstname1, surname1) ;
 printf ("\n%20s%20s", firstname2, surname2) ;

Chapter 11: Console Input/Output 401

}

And here’s the output...

012345678901234567890123456789012345678901234567890
 Sandy Malya
 AjayKumar Gurubaxani

The format specifier %20s reserves 20 columns for printing a
string and then prints the string in these 20 columns with right
justification. This helps lining up names of different lengths
properly. Obviously, the format %-20s would have left justified
the string.

Escape Sequences

We saw earlier how the newline character, \n, when inserted in a
printf()’s format string, takes the cursor to the beginning of the
next line. The newline character is an ‘escape sequence’, so called
because the backslash symbol (\) is considered as an ‘escape’
character—it causes an escape from the normal interpretation of a
string, so that the next character is recognized as one having a
special meaning.

The following example shows usage of \n and a new escape
sequence \t, called ‘tab’. A \t moves the cursor to the next tab stop.
A 80-column screen usually has 10 tab stops. In other words, the
screen is divided into 10 zones of 8 columns each. Printing a tab
takes the cursor to the beginning of next printing zone. For
example, if cursor is positioned in column 5, then printing a tab
takes it to column 8.

main()
{
 printf ("You\tmust\tbe\tcrazy\nto\thate\tthis\tbook") ;
}

402 Let Us C

And here’s the output...

 1 2 3 4
01234567890123456789012345678901234567890
You must be crazy
to hate this book

The \n character causes a new line to begin following ‘crazy’. The
tab and newline are probably the most commonly used escape
sequences, but there are others as well. Figure 11.4 shows a
complete list of these escape sequences.

 Esc. Seq. Purpose Esc. Seq. Purpose

 \n New line \t Tab
 \b Backspace \r Carriage return
 \f Form feed \a Alert
 \’ Single quote \” Double quote
 \\ Backslash

Figure 11.4

The first few of these escape sequences are more or less self-
explanatory. \b moves the cursor one position to the left of its
current position. \r takes the cursor to the beginning of the line in
which it is currently placed. \a alerts the user by sounding the
speaker inside the computer. Form feed advances the computer
stationery attached to the printer to the top of the next page.
Characters that are ordinarily used as delimiters... the single quote,
double quote, and the backslash can be printed by preceding them
with the backslash. Thus, the statement,

printf ("He said, \"Let's do it!\"") ;

Chapter 11: Console Input/Output 403

will print...

He said, "Let's do it!"

So far we have been describing printf()’s specification as if we
are forced to use only %d for an integer, only %c for a char, only
%s for a string and so on. This is not true at all. In fact, printf()
uses the specification that we mention and attempts to perform the
specified conversion, and does its best to produce a proper result.
Sometimes the result is nonsensical, as in case when we ask it to
print a string using %d. Sometimes the result is useful, as in the
case we ask printf() to print ASCII value of a character using
%d. Sometimes the result is disastrous and the entire program
blows up.

The following program shows a few of these conversions, some
sensible, some weird.

main()
{
 char ch = 'z' ;
 int i = 125 ;
 float a = 12.55 ;
 char s[] = "hello there !" ;

 printf ("\n%c %d %f", ch, ch, ch) ;
 printf ("\n%s %d %f", s, s, s) ;
 printf ("\n%c %d %f",i ,i, i) ;
 printf ("\n%f %d\n", a, a) ;
}

And here’s the output ...

z 122 -9362831782501783000000000000000000000000000.000000
hello there ! 3280 -
9362831782501783000000000000000000000000000.000000
} 125 -9362831782501783000000000000000000000000000.000000

404 Let Us C

12.550000 0

I would leave it to you to analyze the results by yourselves. Some
of the conversions you would find are quite sensible.

Let us now turn our attention to scanf(). scanf() allows us to
enter data from keyboard that will be formatted in a certain way.

The general form of scanf() statement is as follows:

scanf ("format string", list of addresses of variables) ;

For example:

scanf ("%d %f %c", &c, &a, &ch) ;

Note that we are sending addresses of variables (addresses are
obtained by using ‘&’ the ‘address of’ operator) to scanf()
function. This is necessary because the values received from
keyboard must be dropped into variables corresponding to these
addresses. The values that are supplied through the keyboard must
be separated by either blank(s), tab(s), or newline(s). Do not
include these escape sequences in the format string.

All the format specifications that we learnt in printf() function are
applicable to scanf() function as well.

sprintf() and sscanf() Functions

The sprintf() function works similar to the printf() function
except for one small difference. Instead of sending the output to
the screen as printf() does, this function writes the output to an
array of characters. The following program illustrates this.

main()
{

Chapter 11: Console Input/Output 405

 int i = 10 ;
 char ch = 'A' ;
 float a = 3.14 ;
 char str[20] ;

 printf ("\n%d %c %f", i, ch, a) ;
 sprintf (str, "%d %c %f", i, ch, a) ;
 printf ("\n%s", str) ;
}

In this program the printf() prints out the values of i, ch and a on
the screen, whereas sprintf() stores these values in the character
array str. Since the string str is present in memory what is written
into str using sprintf() doesn’t get displayed on the screen. Once
str has been built, its contents can be displayed on the screen. In
our program this was achieved by the second printf() statement.

The counterpart of sprintf() is the sscanf() function. It allows us
to read characters from a string and to convert and store them in C
variables according to specified formats. The sscanf() function
comes in handy for in-memory conversion of characters to values.
You may find it convenient to read in strings from a file and then
extract values from a string by using sscanf(). The usage of
sscanf() is same as scanf(), except that the first argument is the
string from which reading is to take place.

Unformatted Console I/O Functions

There are several standard library functions available under this
category—those that can deal with a single character and those
that can deal with a string of characters. For openers let us look at
those which handle one character at a time.

So far for input we have consistently used the scanf() function.
However, for some situations the scanf() function has one glaring
weakness... you need to hit the Enter key before the function can

406 Let Us C

digest what you have typed. However, we often want a function
that will read a single character the instant it is typed without
waiting for the Enter key to be hit. getch() and getche() are two
functions which serve this purpose. These functions return the
character that has been most recently typed. The ‘e’ in getche()
function means it echoes (displays) the character that you typed to
the screen. As against this getch() just returns the character that
you typed without echoing it on the screen. getchar() works
similarly and echo’s the character that you typed on the screen, but
unfortunately requires Enter key to be typed following the
character that you typed. The difference between getchar() and
fgetchar() is that the former is a macro whereas the latter is a
function. Here is a sample program that illustrates the use of these
functions.

main()
{
 char ch ;

 printf ("\nPress any key to continue") ;
 getch() ; /* will not echo the character */

 printf ("\nType any character") ;
 ch = getche() ; /* will echo the character typed */

 printf ("\nType any character") ;
 getchar() ; /* will echo character, must be followed by enter key */
 printf ("\nContinue Y/N") ;
 fgetchar() ; /* will echo character, must be followed by enter key */
}

And here is a sample run of this program...

Press any key to continue
Type any character B
Type any character W
Continue Y/N Y

Chapter 11: Console Input/Output 407

putch() and putchar() form the other side of the coin. They print
a character on the screen. As far as the working of putch()
putchar() and fputchar() is concerned it’s exactly same. The
following program illustrates this.

main()
{
 char ch = 'A' ;

 putch (ch) ;
 putchar (ch) ;
 fputchar (ch) ;
 putch ('Z') ;
 putchar ('Z') ;
 fputchar ('Z') ;
}

And here is the output...

AAAZZZ

The limitation of putch(), putchar() and fputchar() is that they
can output only one character at a time.

gets() and puts()

gets() receives a string from the keyboard. Why is it needed?
Because scanf() function has some limitations while receiving
string of characters, as the following example illustrates...

main()
{
 char name[50] ;

 printf ("\nEnter name ") ;
 scanf ("%s", name) ;
 printf ("%s", name) ;

408 Let Us C

}

And here is the output...

Enter name Jonty Rhodes
Jonty

Surprised? Where did “Rhodes” go? It never got stored in the array
name[], because the moment the blank was typed after “Jonty”
scanf() assumed that the name being entered has ended. The result
is that there is no way (at least not without a lot of trouble on the
programmer’s part) to enter a multi-word string into a single
variable (name in this case) using scanf(). The solution to this
problem is to use gets() function. As said earlier, it gets a string
from the keyboard. It is terminated when an Enter key is hit. Thus,
spaces and tabs are perfectly acceptable as part of the input string.
More exactly, gets() gets a newline (\n) terminated string of
characters from the keyboard and replaces the \n with a \0.

The puts() function works exactly opposite to gets() function. It
outputs a string to the screen.

Here is a program which illustrates the usage of these functions:

main()
{
 char footballer[40] ;

 puts ("Enter name") ;
 gets (footballer) ; /* sends base address of array */
 puts ("Happy footballing!") ;
 puts (footballer) ;
}

Following is the sample output:

Enter name

Chapter 11: Console Input/Output 409

Jonty Rhodes
Happy footballing!
Jonty Rhodes

Why did we use two puts() functions to print “Happy
footballing!” and “Jonty Rhodes”? Because, unlike printf(),
puts() can output only one string at a time. If we attempt to print
two strings using puts(), only the first one gets printed. Similarly,
unlike scanf(), gets() can be used to read only one string at a
time.

Summary
(a)
(b)
(c)

(d)

(e)

(f)

There is no keyword available in C for doing input/output.
All I/O in C is done using standard library functions.
There are several functions available for performing console
input/output.
The formatted console I/O functions can force the user to
receive the input in a fixed format and display the output in a
fixed format.
There are several format specifiers and escape sequences
available to format input and output.
Unformatted console I/O functions work faster since they do
not have the overheads of formatting the input or output.

Exercise

[A] What would be the output of the following programs:

(a) main()
{
 char ch ;
 ch = getchar() ;
 if (islower (ch))
 putchar (toupper (ch)) ;
 else
 putchar (tolower (ch)) ;

410 Let Us C

}

(b) main()
{
 int i = 2 ;
 float f = 2.5367 ;
 char str[] = "Life is like that" ;

 printf ("\n%4d\t%3.3f\t%4s", i, f, str) ;
}

(c) main()
{
 printf ("More often than \b\b not \rthe person who \
 wins is the one who thinks he can!") ;
}

(d) char p[] = "The sixth sick sheikh's sixth ship is sick" ;
main()
{
 int i = 0 ;
 while (p[i] != '\0')
 {
 putch (p[i]) ;
 i++ ;
 }
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{
 int i ;
 char a[] = "Hello" ;
 while (a != '\0')
 {
 printf ("%c", *a) ;
 a++ ;
 }
}

Chapter 11: Console Input/Output 411

(b) main()
{
 double dval ;
 scanf ("%f", &dval) ;
 printf ("\nDouble Value = %lf", dval) ;
}

(c) main()
{
 int ival ;
 scanf ("%d\n", &n) ;
 printf ("\nInteger Value = %d", ival) ;
}

(d) main()
{
 char *mess[5] ;
 for (i = 0 ; i < 5 ; i++)
 scanf ("%s", mess[i]) ;
}

(e) main()
{
 int dd, mm, yy ;
 printf ("\nEnter day, month and year\n") ;
 scanf ("%d%*c%d%*c%d", &dd, &mm, &yy) ;
 printf ("The date is: %d - %d - %d", dd, mm, yy) ;
}

(f) main()
{
 char text ;
 sprintf (text, "%4d\t%2.2f\n%s", 12, 3.452, "Merry Go Round") ;
 printf ("\n%s", text) ;
}

(g) main()
{
 char buffer[50] ;

412 Let Us C

 int no = 97;
 double val = 2.34174 ;
 char name[10] = "Shweta" ;

 sprintf (buffer, "%d %lf %s", no, val, name) ;
 printf ("\n%s", buffer) ;
 sscanf (buffer, "%4d %2.2lf %s", &no, &val, name) ;
 printf ("\n%s", buffer) ;
 printf ("\n%d %lf %s", no, val, name) ;

}

[C] Answer the following:

(a)

(b)

(c)

To receive the string "We have got the guts, you get the
glory!!" in an array char str[100] which of the following
functions would you use?

1. scanf ("%s", str) ;
2. gets (str) ;
3. getche (str) ;
4. fgetchar (str) ;

Which function would you use if a single key were to be
received through the keyboard?

1. scanf()
2. gets()
3. getche()
4. getchar()

If an integer is to be entered through the keyboard, which
function would you use?

1. scanf()
2. gets()
3. getche()
4. getchar()

Chapter 11: Console Input/Output 413

(d)

(e)

(f)

(g)

(a)

(b)

If a character string is to be received through the keyboard
which function would work faster?

1. scanf()
2. gets()

What is the difference between getchar(), fgetchar(),
getch() and getche()?

The format string of a printf() function can contain:

1. Characters, format specifications and escape sequences
2. Character, integers and floats
3. Strings, integers and escape sequences
4. Inverted commas, percentage sign and backslash character

A field-width specifier in a printf() function:

1. Controls the margins of the program listing
2. Specifies the maximum value of a number
3. Controls the size of type used to print numbers
4. Specifies how many columns will be used to print the

number

[D] Answer the following:

Write down two functions xgets() and xputs() which work
similar to the standard library functions gets() and puts().

Write down a function getint(), which would receive a
numeric string from the keyboard, convert it to an integer
number and return the integer to the calling function. A
sample usage of getint() is shown below:

main()
{
 int a ;

414 Let Us C

 a = getint() ;
 printf ("you entered %d", a)
}

12 File Input/Output

• Data Organization
• File Operations

Opening a File
Reading from a File
Trouble in Opening a File
Closing the File

• Counting Characters, Tabs, Spaces, …
• A File-copy Program

Writing to a File
• File Opening Modes
• String (line) I/O in Files

The Awkward Newline
• Record I/O in Files
• Text Files and Binary Files
• Record I/O Revisited
• Database Management
• Low Level Disk I/O

A Low Level File-copy Program
• I/O Under Windows
• Summary
• Exercise

415

416 Let Us C

ften it is not enough to just display the data on the screen.
This is because if the data is large, only a limited amount
of it can be stored in memory and only a limited amount

of it can be displayed on the screen. It would be inappropriate to
store this data in memory for one more reason. Memory is volatile
and its contents would be lost once the program is terminated. So
if we need the same data again it would have to be either entered
through the keyboard again or would have to be regenerated
programmatically. Obviously both these operations would be
tedious. At such times it becomes necessary to store the data in a
manner that can be later retrieved and displayed either in part or in
whole. This medium is usually a ‘file’ on the disk. This chapter
discusses how file I/O operations can be performed.

O

Data Organization
Before we start doing file input/output let us first find out how data
is organized on the disk. All data stored on the disk is in binary
form. How this binary data is stored on the disk varies from one
OS to another. However, this does not affect the C programmer
since he has to use only the library functions written for the
particular OS to be able to perform input/output. It is the compiler
vendor’s responsibility to correctly implement these library
functions by taking the help of OS. This is illustrated in Figure
12.1.

C Library Our program OS functions
Disk

Figure 12.1

Chapter 12: File Input/Output 417

File Operations
There are different operations that can be carried out on a file.
These are:

(a)
(b)
(c)
(d)
(e)
(f)

Creation of a new file
Opening an existing file
Reading from a file
Writing to a file
Moving to a specific location in a file (seeking)
Closing a file

Let us now write a program to read a file and display its contents
on the screen. We will first list the program and show what it does,
and then dissect it line by line. Here is the listing…

/* Display contents of a file on screen. */
include "stdio.h"
main()
{
 FILE *fp ;
 char ch ;

 fp = fopen ("PR1.C", "r") ;

 while (1)
 {
 ch = fgetc (fp) ;

 if (ch == EOF)
 break ;

 printf ("%c", ch) ;
 }

 fclose (fp) ;
}

418 Let Us C

On execution of this program it displays the contents of the file
‘PR1.C’ on the screen. Let us now understand how it does the
same.

Opening a File

Before we can read (or write) information from (to) a file on a disk
we must open the file. To open the file we have called the function
fopen(). It would open a file “PR1.C” in ‘read’ mode, which tells
the C compiler that we would be reading the contents of the file.
Note that “r” is a string and not a character; hence the double
quotes and not single quotes. In fact fopen() performs three
important tasks when you open the file in “r” mode:

(a)
(b)

(c)

Firstly it searches on the disk the file to be opened.
Then it loads the file from the disk into a place in memory
called buffer.
It sets up a character pointer that points to the first character
of the buffer.

Why do we need a buffer at all? Imagine how inefficient it would
be to actually access the disk every time we want to read a
character from it. Every time we read something from a disk, it
takes some time for the disk drive to position the read/write head
correctly. On a floppy disk system, the drive motor has to actually
start rotating the disk from a standstill position every time the disk
is accessed. If this were to be done for every character we read
from the disk, it would take a long time to complete the reading
operation. This is where a buffer comes in. It would be more
sensible to read the contents of the file into the buffer while
opening the file and then read the file character by character from
the buffer rather than from the disk. This is shown in Figure 12.2.

Chapter 12: File Input/Output 419

DISK

Memory
PR1.C

Buffer

40

fp

40

Figure 12.2

Same argument also applies to writing information in a file.
Instead of writing characters in the file on the disk one character at
a time it would be more efficient to write characters in a buffer and
then finally transfer the contents from the buffer to the disk.

To be able to successfully read from a file information like mode
of opening, size of file, place in the file from where the next read
operation would be performed, etc. has to be maintained. Since all
this information is inter-related, all of it is gathered together by
fopen() in a structure called FILE. fopen() returns the address of
this structure, which we have collected in the structure pointer
called fp. We have declared fp as

FILE *fp ;

420 Let Us C

The FILE structure has been defined in the header file “stdio.h”
(standing for standard input/output header file). Therefore, it is
necessary to #include this file.

Reading from a File

Once the file has been opened for reading using fopen(), as we
have seen, the file’s contents are brought into buffer (partly or
wholly) and a pointer is set up that points to the first character in
the buffer. This pointer is one of the elements of the structure to
which fp is pointing (refer Figure 12.2).

To read the file’s contents from memory there exists a function
called fgetc(). This has been used in our program as,

ch = fgetc (fp) ;

fgetc() reads the character from the current pointer position,
advances the pointer position so that it now points to the next
character, and returns the character that is read, which we collected
in the variable ch. Note that once the file has been opened, we no
longer refer to the file by its name, but through the file pointer fp.

We have used the function fgetc() within an indefinite while loop.
There has to be a way to break out of this while. When shall we
break out... the moment we reach the end of file. But what is end
of file? A special character, whose ASCII value is 26, signifies end
of file. This character is inserted beyond the last character in the
file, when it is created.

While reading from the file, when fgetc() encounters this special
character, instead of returning the character that it has read, it
returns the macro EOF. The EOF macro has been defined in the
file “stdio.h”. In place of the function fgetc() we could have as
well used the macro getc() with the same effect.

Chapter 12: File Input/Output 421

In our program we go on reading each character from the file till
end of file is not met. As each character is read we display it on the
screen. Once out of the loop, we close the file.

Trouble in Opening a File

There is a possibility that when we try to open a file using the
function fopen(), the file may not be opened. While opening the
file in “r” mode, this may happen because the file being opened
may not be present on the disk at all. And you obviously cannot
read a file that doesn’t exist. Similarly, while opening the file for
writing, fopen() may fail due to a number of reasons, like, disk
space may be insufficient to open a new file, or the disk may be
write protected or the disk is damaged and so on.

Crux of the matter is that it is important for any program that
accesses disk files to check whether a file has been opened
successfully before trying to read or write to the file. If the file
opening fails due to any of the several reasons mentioned above,
the fopen() function returns a value NULL (defined in “stdio.h”
as #define NULL 0). Here is how this can be handled in a
program...

#include "stdio.h"
main()
{
 FILE *fp ;

 fp = fopen ("PR1.C", "r") ;
 if (fp == NULL)
 {
 puts ("cannot open file") ;
 exit() ;
 }
}

422 Let Us C

Closing the File

When we have finished reading from the file, we need to close it.
This is done using the function fclose() through the statement,

fclose (fp) ;

Once we close the file we can no longer read from it using getc()
unless we reopen the file. Note that to close the file we don’t use
the filename but the file pointer fp. On closing the file the buffer
associated with the file is removed from memory.

In this program we have opened the file for reading. Suppose we
open a file with an intention to write characters into it. This time
too a buffer would get associated with it. When we attempt to
write characters into this file using fputc() the characters would
get written to the buffer. When we close this file using fclose()
three operations would be performed:

(a)

(b)

(c)

The characters in the buffer would be written to the file on the
disk.
At the end of file a character with ASCII value 26 would get
written.
The buffer would be eliminated from memory.

You can imagine a possibility when the buffer may become full
before we close the file. In such a case the buffer’s contents would
be written to the disk the moment it becomes full. All this buffer
management is done for us by the library functions.

Counting Characters, Tabs, Spaces, …
Having understood the first file I/O program in detail let us now
try our hand at one more. Let us write a program that will read a
file and count how many characters, spaces, tabs and newlines are
present in it. Here is the program…

Chapter 12: File Input/Output 423

/* Count chars, spaces, tabs and newlines in a file */
include "stdio.h"
main()
{
 FILE *fp ;
 char ch ;
 int nol = 0, not = 0, nob = 0, noc = 0 ;

 fp = fopen ("PR1.C", "r") ;

 while (1)
 {
 ch = fgetc (fp) ;

 if (ch == EOF)
 break ;

 noc++ ;

 if (ch == ' ')
 nob++ ;

 if (ch == '\n')
 nol++ ;

 if (ch == '\t')
 not++ ;
 }

 fclose (fp) ;
 printf ("\nNumber of characters = %d", noc) ;
 printf ("\nNumber of blanks = %d", nob) ;
 printf ("\nNumber of tabs = %d", not) ;
 printf ("\nNumber of lines = %d", nol) ;
}

424 Let Us C

Here is a sample run...

Number of characters = 125
Number of blanks = 25
Number of tabs = 13
Number of lines = 22

The above statistics are true for a file “PR1.C”, which I had on my
disk. You may give any other filename and obtain different results.
I believe the program is self-explanatory.

In this program too we have opened the file for reading and then
read it character by character. Let us now try a program that needs
to open a file for writing.

A File-copy Program
We have already used the function fgetc() which reads characters
from a file. Its counterpart is a function called fputc() which
writes characters to a file. As a practical use of these character I/O
functions we can copy the contents of one file into another, as
demonstrated in the following program. This program takes the
contents of a file and copies them into another file, character by
character.

#include "stdio.h"
main()
{
 FILE *fs, *ft ;
 char ch ;

 fs = fopen ("pr1.c", "r") ;
 if (fs == NULL)
 {
 puts ("Cannot open source file") ;
 exit() ;

Chapter 12: File Input/Output 425

 }

 ft = fopen ("pr2.c", "w") ;
 if (ft == NULL)
 {
 puts ("Cannot open target file") ;
 fclose (fs) ;
 exit() ;
 }

 while (1)
 {
 ch = fgetc (fs) ;

 if (ch == EOF)
 break ;
 else
 fputc (ch, ft) ;
 }

 fclose (fs) ;
 fclose (ft) ;
}

I hope most of the stuff in the program can be easily understood,
since it has already been dealt with in the earlier section. What is
new is only the function fputc(). Let us see how it works.

Writing to a File

The fputc() function is similar to the putch() function, in the
sense that both output characters. However, putch() function
always writes to the VDU, whereas, fputc() writes to the file.
Which file? The file signified by ft. The writing process continues
till all characters from the source file have been written to the
target file, following which the while loop terminates.

426 Let Us C

Note that our sample file-copy program is capable of copying only
text files. To copy files with extension .EXE or .COM, we need to
open the files in binary mode, a topic that would be dealt with in
sufficient detail in a later section.

File Opening Modes
In our first program on disk I/O we have opened the file in read
(“r”) mode. However, “r” is but one of the several modes in which
we can open a file. Following is a list of all possible modes in
which a file can be opened. The tasks performed by fopen() when
a file is opened in each of these modes are also mentioned.

"r" Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer which points to
the first character in it. If the file cannot be opened fopen()
returns NULL.

Operations possible – reading from the file.

"w" Searches file. If the file exists, its contents are overwritten.
If the file doesn’t exist, a new file is created. Returns
NULL, if unable to open file.

Operations possible – writing to the file.

"a" Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer that points to the
last character in it. If the file doesn’t exist, a new file is
created. Returns NULL, if unable to open file.

Operations possible - adding new contents at the end of file.

"r+" Searches file. If is opened successfully fopen() loads it into
memory and sets up a pointer which points to the first
character in it. Returns NULL, if unable to open the file.

Chapter 12: File Input/Output 427

Operations possible - reading existing contents, writing new
contents, modifying existing contents of the file.

"w+" Searches file. If the file exists, its contents are overwritten.
If the file doesn’t exist a new file is created. Returns NULL,
if unable to open file.

Operations possible - writing new contents, reading them
back and modifying existing contents of the file.

"a+" Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer which points to
the first character in it. If the file doesn’t exist, a new file is
created. Returns NULL, if unable to open file.

Operations possible - reading existing contents, appending
new contents to end of file. Cannot modify existing
contents.

String (line) I/O in Files
For many purposes, character I/O is just what is needed. However,
in some situations the usage of functions that read or write entire
strings might turn out to be more efficient.

Reading or writing strings of characters from and to files is as easy
as reading and writing individual characters. Here is a program
that writes strings to a file using the function fputs().

/* Receives strings from keyboard and writes them to file */
#include "stdio.h"
main()
{
 FILE *fp ;
 char s[80] ;

428 Let Us C

 fp = fopen ("POEM.TXT", "w") ;
 if (fp == NULL)
 {
 puts ("Cannot open file") ;
 exit() ;
 }

 printf ("\nEnter a few lines of text:\n") ;
 while (strlen (gets (s)) > 0)
 {
 fputs (s, fp) ;
 fputs ("\n", fp) ;
 }

 fclose (fp) ;
}

And here is a sample run of the program...

Enter a few lines of text:
Shining and bright, they are forever,
so true about diamonds,
more so of memories,
especially yours !

Note that each string is terminated by hitting enter. To terminate
the execution of the program, hit enter at the beginning of a line.
This creates a string of zero length, which the program recognizes
as the signal to close the file and exit.

We have set up a character array to receive the string; the fputs()
function then writes the contents of the array to the disk. Since
fputs() does not automatically add a newline character to the end
of the string, we must do this explicitly to make it easier to read
the string back from the file.

Here is a program that reads strings from a disk file.

Chapter 12: File Input/Output 429

/* Reads strings from the file and displays them on screen */
#include "stdio.h"
main()
{
 FILE *fp ;
 char s[80] ;

 fp = fopen ("POEM.TXT", "r") ;
 if (fp == NULL)
 {
 puts ("Cannot open file") ;
 exit() ;
 }

 while (fgets (s, 79, fp) != NULL)
 printf ("%s" , s) ;

 fclose (fp) ;
}

And here is the output...

Shining and bright, they are forever,
so true about diamonds,
more so of memories,
especially yours !

The function fgets() takes three arguments. The first is the address
where the string is stored, and the second is the maximum length
of the string. This argument prevents fgets() from reading in too
long a string and overflowing the array. The third argument, as
usual, is the pointer to the structure FILE. When all the lines from
the file have been read, we attempt to read one more line, in which
case fgets() returns a NULL.

430 Let Us C

The Awkward Newline

We had earlier written a program that counts the total number of
characters present in a file. If we use that program to count the
number of characters present in the above poem (stored in the file
“POEM.TXT”), it would give us the character count as 101. The
same file if seen in the directory, would be reported to contain 105
characters.

This discrepancy occurs because when we attempt to write a “\n”
to the file using fputs(), fputs() converts the \n to \r\n
combination. Here \r stands for carriage return and \n for linefeed.
If we read the same line back using fgets() the reverse conversion
happens. Thus when we write the first line of the poem and a “\n”
using two calls to fputs(), what gets written to the file is

Shining and bright, they are forever,\r\n

When the same line is read back into the array s[] using fgets(),
the array contains

Shining and bright, they are forever,\n\0

Thus conversion of \n to \r\n during writing and \r\n conversion to
\n during reading is a feature of the standard library functions and
not that of the OS. Hence the OS counts \r and \n as separate
characters. In our poem there are four lines, therefore there is a
discrepancy of four characters (105 - 101).

Record I/O in Files
So far we have dealt with reading and writing only characters and
strings. What if we want to read or write numbers from/to file?
Furthermore, what if we desire to read/write a combination of
characters, strings and numbers? For this first we would organize
this dissimilar data together in a structure and then use fprintf()

Chapter 12: File Input/Output 431

and fscanf() library functions to read/write data from/to file.
Following program illustrates the use of structures for writing
records of employees.

/* Writes records to a file using structure */
#include "stdio.h"
main()
{
 FILE *fp ;
 char another = 'Y' ;
 struct emp
 {
 char name[40] ;
 int age ;
 float bs ;
 } ;
 struct emp e ;

 fp = fopen ("EMPLOYEE.DAT", "w") ;

 if (fp == NULL)
 {
 puts ("Cannot open file") ;
 exit() ;
 }

 while (another == 'Y')
 {
 printf ("\nEnter name, age and basic salary: ") ;
 scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
 fprintf (fp, "%s %d %f\n", e.name, e.age, e.bs) ;

 printf ("Add another record (Y/N) ") ;
 fflush (stdin) ;
 another = getche() ;
 }

 fclose (fp) ;

432 Let Us C

}
And here is the output of the program...

Enter name, age and basic salary: Sunil 34 1250.50
Add another record (Y/N) Y
Enter name, age and basic salary: Sameer 21 1300.50
Add another record (Y/N) Y
Enter name, age and basic salary: Rahul 34 1400.55
Add another record (Y/N) N

In this program we are just reading the data into a structure
variable using scanf(), and then dumping it into a disk file using
fprintf(). The user can input as many records as he desires. The
procedure ends when the user supplies ‘N’ for the question ‘Add
another record (Y/N)’.

The key to this program is the function fprintf(), which writes the
values in the structure variable to the file. This function is similar
to printf(), except that a FILE pointer is included as the first
argument. As in printf(), we can format the data in a variety of
ways, by using fprintf(). In fact all the format conventions of
printf() function work with fprintf() as well.

Perhaps you are wondering what for have we used the function
fflush(). The reason is to get rid of a peculiarity of scanf(). After
supplying data for one employee, we would hit the enter key. What
scanf() does is it assigns name, age and salary to appropriate
variables and keeps the enter key unread in the keyboard buffer.
So when it’s time to supply Y or N for the question ‘Another
employee (Y/N)’, getch() will read the enter key from the buffer
thinking that user has entered the enter key. To avoid this problem
we use the function fflush(). It is designed to remove or ‘flush
out’ any data remaining in the buffer. The argument to fflush()
must be the buffer which we want to flush out. Here we have used
‘stdin’, which means buffer related with standard input
device—keyboard.

Chapter 12: File Input/Output 433

Let us now write a program that reads the employee records
created by the above program. Here is how it can be done...

/* Read records from a file using structure */
#include "stdio.h"
main()
{
 FILE *fp ;
 struct emp
 {
 char name[40] ;
 int age ;
 float bs ;
 } ;
 struct emp e ;

 fp = fopen ("EMPLOYEE.DAT", "r") ;

 if (fp == NULL)
 {
 puts ("Cannot open file") ;
 exit() ;
 }

 while (fscanf (fp, "%s %d %f", e.name, &e.age, &e.bs) != EOF)
 printf ("\n%s %d %f", e.name, e.age, e.bs) ;

 fclose (fp) ;
}

And here is the output of the program...

Sunil 34 1250.500000
Sameer 21 1300.500000
Rahul 34 1400.500000

434 Let Us C

Text Files and Binary Files
All the programs that we wrote in this chapter so far worked on
text files. Some of them would not work correctly on binary files.
A text file contains only textual information like alphabets, digits
and special symbols. In actuality the ASCII codes of these
characters are stored in text files. A good example of a text file is
any C program, say PR1.C.

As against this, a binary file is merely a collection of bytes. This
collection might be a compiled version of a C program (say
PR1.EXE), or music data stored in a wave file or a picture stored
in a graphic file. A very easy way to find out whether a file is a
text file or a binary file is to open that file in Turbo C/C++. If on
opening the file you can make out what is displayed then it is a
text file, otherwise it is a binary file.

As mentioned while explaining the file-copy program, the program
cannot copy binary files successfully. We can improve the same
program to make it capable of copying text as well as binary files
as shown below.

#include "stdio.h"
main()
{
 FILE *fs, *ft ;
 int ch ;

 fs = fopen ("pr1.exe", "rb") ;
 if (fs == NULL)
 {
 puts ("Cannot open source file") ;
 exit() ;
 }

 ft = fopen ("newpr1.exe", "wb") ;

Chapter 12: File Input/Output 435

 if (ft == NULL)
 {
 puts ("Cannot open target file") ;
 fclose (fs) ;
 exit() ;
 }

 while (1)
 {
 ch = fgetc (fs) ;

 if (ch == EOF)
 break ;
 else
 fputc (ch, ft) ;
 }

 fclose (fs) ;
 fclose (ft) ;
}

Using this program we can comfortably copy text as well as binary
files. Note that here we have opened the source and target files in
“rb” and “wb” modes respectively. While opening the file in text
mode we can use either “r” or “rt”, but since text mode is the
default mode we usually drop the ‘t’.

From the programming angle there are three main areas where text
and binary mode files are different. These are:

(a)
(b)
(c)

Handling of newlines
Representation of end of file
Storage of numbers

Let us explore these three differences.

436 Let Us C

Text versus Binary Mode: Newlines

We have already seen that, in text mode, a newline character is
converted into the carriage return-linefeed combination before
being written to the disk. Likewise, the carriage return-linefeed
combination on the disk is converted back into a newline when the
file is read by a C program. However, if a file is opened in binary
mode, as opposed to text mode, these conversions will not take
place.

Text versus Binary Mode: End of File

The second difference between text and binary modes is in the way
the end-of-file is detected. In text mode, a special character, whose
ASCII value is 26, is inserted after the last character in the file to
mark the end of file. If this character is detected at any point in the
file, the read function would return the EOF signal to the program.

As against this, there is no such special character present in the
binary mode files to mark the end of file. The binary mode files
keep track of the end of file from the number of characters present
in the directory entry of the file.

There is a moral to be derived from the end of file marker of text
mode files. If a file stores numbers in binary mode, it is important
that binary mode only be used for reading the numbers back, since
one of the numbers we store might well be the number 26
(hexadecimal 1A). If this number is detected while we are reading
the file by opening it in text mode, reading would be terminated
prematurely at that point.

Thus the two modes are not compatible. See to it that the file that
has been written in text mode is read back only in text mode.
Similarly, the file that has been written in binary mode must be
read back only in binary mode.

Chapter 12: File Input/Output 437

Text versus Binary Mode: Storage of Numbers

The only function that is available for storing numbers in a disk
file is the fprintf() function. It is important to understand how
numerical data is stored on the disk by fprintf(). Text and
characters are stored one character per byte, as we would expect.
Are numbers stored as they are in memory, two bytes for an
integer, four bytes for a float, and so on? No.

Numbers are stored as strings of characters. Thus, 1234, even
though it occupies two bytes in memory, when transferred to the
disk using fprintf(), would occupy four bytes, one byte per
character. Similarly, the floating-point number 1234.56 would
occupy 7 bytes on disk. Thus, numbers with more digits would
require more disk space.

Hence if large amount of numerical data is to be stored in a disk
file, using text mode may turn out to be inefficient. The solution is
to open the file in binary mode and use those functions (fread()
and fwrite() which are discussed later) which store the numbers in
binary format. It means each number would occupy same number
of bytes on disk as it occupies in memory.

Record I/O Revisited
The record I/O program that we did in an earlier section has two
disadvantages:

(a)

(b)

The numbers (basic salary) would occupy more number of
bytes, since the file has been opened in text mode. This is
because when the file is opened in text mode, each number is
stored as a character string.

If the number of fields in the structure increase (say, by
adding address, house rent allowance etc.), writing structures

438 Let Us C

using fprintf(), or reading them using fscanf(), becomes
quite clumsy.

Let us now see a more efficient way of reading/writing records
(structures). This makes use of two functions fread() and
fwrite(). We will write two programs, first one would write
records to the file and the second would read these records from
the file and display them on the screen.

/* Receives records from keyboard and writes them to a file in binary mode */
#include "stdio.h"
main()
{
 FILE *fp ;
 char another = 'Y' ;
 struct emp
 {
 char name[40] ;
 int age ;
 float bs ;
 } ;
 struct emp e ;

 fp = fopen ("EMP.DAT", "wb") ;

 if (fp == NULL)
 {
 puts ("Cannot open file") ;
 exit() ;
 }

 while (another == 'Y')
 {
 printf ("\nEnter name, age and basic salary: ") ;
 scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
 fwrite (&e, sizeof (e), 1, fp) ;

 printf ("Add another record (Y/N) ") ;

Chapter 12: File Input/Output 439

 fflush (stdin) ;
 another = getche() ;
 }

 fclose (fp) ;
}

And here is the output...

Enter name, age and basic salary: Suresh 24 1250.50
Add another record (Y/N) Y
Enter name, age and basic salary: Ranjan 21 1300.60
Add another record (Y/N) Y
Enter name, age and basic salary: Harish 28 1400.70
Add another record (Y/N) N

Most of this program is similar to the one that we wrote earlier,
which used fprintf() instead of fwrite(). Note, however, that the
file “EMP.DAT” has now been opened in binary mode.

The information obtained from the keyboard about the employee is
placed in the structure variable e. Then, the following statement
writes the structure to the file:

fwrite (&e, sizeof (e), 1, fp) ;

Here, the first argument is the address of the structure to be written
to the disk.

The second argument is the size of the structure in bytes. Instead
of counting the bytes occupied by the structure ourselves, we let
the program do it for us by using the sizeof() operator. The
sizeof() operator gives the size of the variable in bytes. This keeps
the program unchanged in event of change in the elements of the
structure.

440 Let Us C

The third argument is the number of such structures that we want
to write at one time. In this case, we want to write only one
structure at a time. Had we had an array of structures, for example,
we might have wanted to write the entire array at once.

The last argument is the pointer to the file we want to write to.

Now, let us write a program to read back the records written to the
disk by the previous program.

/* Reads records from binary file and displays them on VDU */
#include "stdio.h"
main()
{
 FILE *fp ;
 struct emp
 {
 char name[40] ;
 int age ;
 float bs ;
 } ;
 struct emp e ;

 fp = fopen ("EMP.DAT", "rb") ;

 if (fp == NULL)
 {
 puts ("Cannot open file") ;
 exit() ;
 }

 while (fread (&e, sizeof (e), 1, fp) == 1)
 printf ("\n%s %d %f", e.name, e.age, e.bs) ;

 fclose (fp) ;
}

Chapter 12: File Input/Output 441

Here, the fread() function causes the data read from the disk to be
placed in the structure variable e. The format of fread() is same as
that of fwrite(). The function fread() returns the number of
records read. Ordinarily, this should correspond to the third
argument, the number of records we asked for... 1 in this case. If
we have reached the end of file, since fread() cannot read
anything, it returns a 0. By testing for this situation, we know
when to stop reading.

As you can now appreciate, any database management application
in C must make use of fread() and fwrite() functions, since they
store numbers more efficiently, and make writing/reading of
structures quite easy. Note that even if the number of elements
belonging to the structure increases, the format of fread() and
fwrite() remains same.

Database Management
So far we have learnt record I/O in bits and pieces. However, in
any serious database management application, we will have to
combine all that we have learnt in a proper manner to make sense.
I have attempted to do this in the following menu driven program.
There is a provision to Add, Modify, List and Delete records, the
operations that are imperative in any database management.
Following comments would help you in understanding the
program easily:

− Addition of records must always take place at the end of
existing records in the file, much in the same way you would
add new records in a register manually.

− Listing records means displaying the existing records on the
screen. Naturally, records should be listed from first record to
last record.

− While modifying records, first we must ask the user which
record he intends to modify. Instead of asking the record

442 Let Us C

number to be modified, it would be more meaningful to ask for
the name of the employee whose record is to be modified. On
modifying the record, the existing record gets overwritten by
the new record.

− In deleting records, except for the record to be deleted, rest of
the records must first be written to a temporary file, then the
original file must be deleted, and the temporary file must be
renamed back to original.

− Observe carefully the way the file has been opened, first for
reading & writing, and if this fails (the first time you run this
program it would certainly fail, because that time the file is not
existing), for writing and reading. It is imperative that the file
should be opened in binary mode.

− Note that the file is being opened only once and closed only
once, which is quite logical.

− clrscr() function clears the contents of the screen and
gotoxy() places the cursor at appropriate position on the
screen. The parameters passed to gotoxy() are column number
followed by row number.

Given below is the complete listing of the program.

/* A menu-driven program for elementary database management */
#include "stdio.h"
main()
{
 FILE *fp, *ft ;
 char another, choice ;
 struct emp
 {
 char name[40] ;
 int age ;
 float bs ;
 } ;

Chapter 12: File Input/Output 443

 struct emp e ;
 char empname[40] ;
 long int recsize ;

 fp = fopen ("EMP.DAT", "rb+") ;

 if (fp == NULL)
 {
 fp = fopen ("EMP.DAT", "wb+") ;

 if (fp == NULL)
 {
 puts ("Cannot open file") ;
 exit() ;
 }
 }

 recsize = sizeof (e) ;

 while (1)
 {
 clrscr() ;

 gotoxy (30, 10) ;
 printf ("1. Add Records") ;
 gotoxy (30, 12) ;
 printf ("2. List Records") ;
 gotoxy (30, 14) ;
 printf ("3. Modify Records") ;
 gotoxy (30, 16) ;
 printf ("4. Delete Records") ;
 gotoxy (30, 18) ;
 printf ("0. Exit") ;
 gotoxy (30, 20) ;
 printf ("Your choice") ;

 fflush (stdin) ;
 choice = getche() ;

444 Let Us C

 switch (choice)
 {
 case '1' :

 fseek (fp, 0 , SEEK_END) ;
 another = 'Y' ;

 while (another == 'Y')
 {
 printf ("\nEnter name, age and basic sal. ") ;
 scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
 fwrite (&e, recsize, 1, fp) ;
 printf ("\nAdd another Record (Y/N) ") ;
 fflush (stdin) ;
 another = getche() ;
 }

 break ;

 case '2' :

 rewind (fp) ;

 while (fread (&e, recsize, 1, fp) == 1)
 printf ("\n%s %d %f", e.name, e.age, e.bs) ;

 break ;

 case '3' :

 another = 'Y' ;
 while (another == 'Y')
 {
 printf ("\nEnter name of employee to modify ") ;
 scanf ("%s", empname) ;

 rewind (fp) ;
 while (fread (&e, recsize, 1, fp) == 1)

Chapter 12: File Input/Output 445

 {
 if (strcmp (e.name, empname) == 0)
 {
 printf ("\nEnter new name, age & bs") ;
 scanf ("%s %d %f", e.name, &e.age,
 &e.bs) ;
 fseek (fp, - recsize, SEEK_CUR) ;
 fwrite (&e, recsize, 1, fp) ;
 break ;
 }
 }

 printf ("\nModify another Record (Y/N) ") ;
 fflush (stdin) ;
 another = getche() ;
 }

 break ;

 case '4' :

 another = 'Y' ;
 while (another == 'Y')
 {
 printf ("\nEnter name of employee to delete ") ;
 scanf ("%s", empname) ;

 ft = fopen ("TEMP.DAT", "wb") ;

 rewind (fp) ;
 while (fread (&e, recsize, 1, fp) == 1)
 {
 if (strcmp (e.name, empname) != 0)
 fwrite (&e, recsize, 1, ft) ;
 }

 fclose (fp) ;
 fclose (ft) ;

446 Let Us C

 remove ("EMP.DAT") ;
 rename ("TEMP.DAT", "EMP.DAT") ;

 fp = fopen ("EMP.DAT", "rb+") ;

 printf ("Delete another Record (Y/N) ") ;
 fflush (stdin) ;
 another = getche() ;
 }
 break ;

 case '0' :
 fclose (fp) ;
 exit() ;
 }
 }
}

To understand how this program works, you need to be familiar
with the concept of pointers. A pointer is initiated whenever we
open a file. On opening a file a pointer is set up which points to the
first record in the file. To be precise this pointer is present in the
structure to which the file pointer returned by fopen() points to.
On using the functions fread() or fwrite(), the pointer moves to
the beginning of the next record. On closing a file the pointer is
deactivated. Note that the pointer movement is of utmost
importance since fread() always reads that record where the
pointer is currently placed. Similarly, fwrite() always writes the
record where the pointer is currently placed.

The rewind() function places the pointer to the beginning of the
file, irrespective of where it is present right now.

The fseek() function lets us move the pointer from one record to
another. In the program above, to move the pointer to the previous
record from its current position, we used the function,

Chapter 12: File Input/Output 447

fseek (fp, -recsize, SEEK_CUR) ;

Here, -recsize moves the pointer back by recsize bytes from the
current position. SEEK_CUR is a macro defined in “stdio.h”.

Similarly, the following fseek() would place the pointer beyond
the last record in the file.

fseek (fp, 0, SEEK_END) ;

In fact -recsize or 0 are just the offsets that tell the compiler by
how many bytes should the pointer be moved from a particular
position. The third argument could be SEEK_END, SEEK_CUR
or SEEK_SET. All these act as a reference from which the pointer
should be offset. SEEK_END means move the pointer from the
end of the file, SEEK_CUR means move the pointer with
reference to its current position and SEEK_SET means move the
pointer with reference to the beginning of the file.

If we wish to know where the pointer is positioned right now, we
can use the function ftell(). It returns this position as a long int
which is an offset from the beginning of the file. The value
returned by ftell() can be used in subsequent calls to fseek(). A
sample call to ftell() is shown below:

position = ftell (fp) ;

where position is a long int.

Low Level Disk I/O
In low level disk I/O, data cannot be written as individual
characters, or as strings or as formatted data. There is only one
way data can be written or read in low level disk I/O functions—as
a buffer full of bytes.

448 Let Us C

Writing a buffer full of data resembles the fwrite() function.
However, unlike fwrite(), the programmer must set up the buffer
for the data, place the appropriate values in it before writing, and
take them out after writing. Thus, the buffer in the low level I/O
functions is very much a part of the program, rather than being
invisible as in high level disk I/O functions.

Low level disk I/O functions offer following advantages:

(a)

(b)

Since these functions parallel the methods that the OS uses to
write to the disk, they are more efficient than the high level
disk I/O functions.

Since there are fewer layers of routines to go through, low
level I/O functions operate faster than their high level
counterparts.

Let us now write a program that uses low level disk input/output
functions.

A Low Level File-copy Program

Earlier we had written a program to copy the contents of one file to
another. In that program we had read the file character by
character using fgetc(). Each character that was read was written
into the target file using fputc(). Instead of performing the I/O on
a character by character basis we can read a chunk of bytes from
the source file and then write this chunk into the target file. While
doing so the chunk would be read into the buffer and would be
written to the file from the buffer. While doing so we would
manage the buffer ourselves, rather than relying on the library
functions to do so. This is what is low-level about this program.
Here is a program which shows how this can be done.

/* File-copy program which copies text, .com and .exe files */
#include "fcntl.h"
#include "types.h" /* if present in sys directory use

Chapter 12: File Input/Output 449

 "c:tc\\include\\sys\\types.h" */
#include "stat.h" /* if present in sys directory use
 "c:\\tc\\include\\sys\\stat.h" */

main (int argc, char *argv[])
{
 char buffer[512], source [128], target [128] ;
 int inhandle, outhandle, bytes ;

 printf ("\nEnter source file name") ;
 gets (source) ;

 inhandle = open (source, O_RDONLY | O_BINARY) ;
 if (inhandle == -1)
 {
 puts ("Cannot open file") ;
 exit() ;
 }

 printf ("\nEnter target file name") ;
 gets (target) ;

 outhandle = open (target, O_CREAT | O_BINARY | O_WRONLY,
 S_IWRITE) ;
 if (inhandle == -1)
 {
 puts ("Cannot open file") ;
 close (inhandle) ;
 exit() ;
 }

 while (1)
 {
 bytes = read (inhandle, buffer, 512) ;

 if (bytes > 0)
 write (outhandle, buffer, bytes) ;
 else

450 Let Us C

 break ;
 }

 close (inhandle) ;
 close (outhandle) ;
}

Declaring the Buffer

The first difference that you will notice in this program is that we
declare a character buffer,

char buffer[512] ;

This is the buffer in which the data read from the disk will be
placed. The size of this buffer is important for efficient operation.
Depending on the operating system, buffers of certain sizes are
handled more efficiently than others.

Opening a File

We have opened two files in our program, one is the source file
from which we read the information, and the other is the target file
into which we write the information read from the source file.

As in high level disk I/O, the file must be opened before we can
access it. This is done using the statement,

inhandle = open (source, O_RDONLY | O_BINARY) ;

We open the file for the same reason as we did earlier—to
establish communication with operating system about the file. As
usual, we have to supply to open(), the filename and the mode in
which we want to open the file. The possible file opening modes
are given below:

O_APPEND - Opens a file for appending

Chapter 12: File Input/Output 451

O_CREAT - Creates a new file for writing (has no effect
 if file already exists)

O_RDONLY - Creates a new file for reading only
O_RDWR - Creates a file for both reading and writing
O_WRONLY - Creates a file for writing only
O_BINARY - Creates a file in binary mode
O_TEXT - Creates a file in text mode

These ‘O-flags’ are defined in the file “fcntl.h”. So this file must
be included in the program while usng low level disk I/O. Note
that the file “stdio.h” is not necessary for low level disk I/O. When
two or more O-flags are used together, they are combined using
the bitwise OR operator (|). Chapter 14 discusses bitwise
operators in detail.

The other statement used in our program to open the file is,

outhandle = open (target, O_CREAT | O_BINARY | O_WRONLY,
 S_IWRITE) ;

Note that since the target file is not existing when it is being
opened we have used the O_CREAT flag, and since we want to
write to the file and not read from it, therefore we have used
O_WRONLY. And finally, since we want to open the file in
binary mode we have used O_BINARY.

Whenever O_CREAT flag is used, another argument must be
added to open() function to indicate the read/write status of the
file to be created. This argument is called ‘permission argument’.
Permission arguments could be any of the following:

S_IWRITE - Writing to the file permitted
S_IREAD - Reading from the file permitted

452 Let Us C

To use these permissions, both the files “types.h” and “stat.h” must
be #included in the program alongwith “fcntl.h”.

File Handles

Instead of returning a FILE pointer as fopen() did, in low level
disk I/O, open() returns an integer value called ‘file handle’. This
is a number assigned to a particular file, which is used thereafter to
refer to the file. If open() returns a value of -1, it means that the
file couldn’t be successfully opened.

Interaction between Buffer and File

The following statement reads the file or as much of it as will fit
into the buffer:

bytes = read (inhandle, buffer, 512) ;

The read() function takes three arguments. The first argument is
the file handle, the second is the address of the buffer and the third
is the maximum number of bytes we want to read.

The read() function returns the number of bytes actually read.
This is an important number, since it may very well be less than
the buffer size (512 bytes), and we will need to know just how full
the buffer is before we can do anything with its contents. In our
program we have assigned this number to the variable bytes.

For copying the file, we must use both the read() and the write()
functions in a while loop. The read() function returns the number
of bytes actually read. This is assigned to the variable bytes. This
value will be equal to the buffer size (512 bytes) until the end of
file, when the buffer will only be partially full. The variable bytes
therefore is used to tell write(), as to how many bytes to write
from the buffer to the target file.

Chapter 12: File Input/Output 453

Note that when large buffers are used they must be made global
variables otherwise stack overflow occurs.

I/O Under Windows
As said earlier I/O in C is carried out using functions present in the
library that comes with the C compiler targeted for a specific OS.
Windows permits several applications to use the same screen
simultaneously. Hence there is a possibility that what is written by
one application to the console may get overwritten by the output
sent by another application to the console. To avoid such situations
Windows has completely abandoned console I/O functions. It uses
a separate mechanism to send output to a window representing an
application. The details of this mechanism are discussed in
Chapter 17.

Though under Windows console I/O functions are not used, still
functions like fprintf(), fscanf(), fread(), fwrite(), sprintf(),
sscanf() work exactly same under Windows as well.

Summary
(a)

(b)

(c)
(d)

(e)

File I/O can be performed on a character by character basis, a
line by line basis, a record by record basis or a chunk by
chunk basis.
Different operations that can be performed on a file are—
creation of a new file, opening an existing file, reading from a
file, writing to a file, moving to a specific location in a file
(seeking) and closing a file.
File I/O is done using a buffer to improve the efficiency.
A file can be a text file or a binary file depending upon its
contents.
Library functions convert \n to \r\n or vice versa while
writing/reading to/from a file.

454 Let Us C

(f)

(g)

Many library functions convert a number to a numeric string
before writing it to a file, thereby using more space on disk.
This can be avoided using functions fread() and fwrite().
In low level file I/O we can do the buffer management
ourselves.

Exercise

[A] Point out the errors, if any, in the following programs:

(a) #include "stdio.h"

main()
{
 FILE *fp ;
 openfile ("Myfile.txt", fp) ;
 if (fp == NULL)
 printf ("Unable to open file…") ;
}

openfile (char *fn, FILE **f)
{
 *f = fopen (fn, "r") ;
}

(b) #include "stdio.h"
main()
{
 FILE *fp ;
 char c ;
 fp = fopen ("TRY.C" ,"r") ;
 if (fp == null)
 {
 puts ("Cannot open file") ;
 exit() ;
 }
 while ((c = getc (fp)) != EOF)
 putch (c) ;
 fclose (fp) ;

Chapter 12: File Input/Output 455

}

(c) main()
{
 char fname[] = "c:\\students.dat" ;
 FILE *fp ;
 fp = fopen (fname, "tr") ;
 if (fp == NULL)
 printf ("\nUnable to open file...") ;
}

(d) main()
{
 FILE *fp ;
 char str[80] ;
 fp = fopen ("TRY.C", "r") ;
 while (fgets (str, 80, fp) != EOF)
 fputs (str) ;
 fclose (fp) ;
}

(e) #include "stdio.h"
{
 unsigned char ;
 FILE *fp ;

 fp = fopen ("trial", "r") ;
 while ((ch = getc (fp)) != EOF)
 printf ("%c", ch) ;

 fclose (fp) ;
}

(f) main()
{
 FILE *fp ;
 char name[25] ;
 int age ;

 fp = fopen ("YOURS", "r") ;

456 Let Us C

 while (fscanf (fp, "%s %d", name, &age) != NULL)
 fclose (fp) ;
}

(g) main()
{
 FILE *fp ;
 char names[20] ;
 int i ;
 fp = fopen ("students.c", "wb") ;
 for (i = 0 ; i <= 10 ; i++)
 {
 puts ("\nEnter name ") ;
 gets (name) ;
 fwrite (name, size of (name), 1, fp) ;
 }
 close (fp) ;
}

(h) main()
{
 FILE *fp ;
 char name[20] = "Ajay" ;
 int i ;
 fp = fopen ("students.c", "r") ;
 for (i = 0 ; i <= 10 ; i++)
 fwrite (name, sizeof (name), 1, fp) ;
 close (fp) ;
}

(i) #include "fcntl.h"
main()
{
 int fp ;
 fp = open ("pr22.c" , "r") ;
 if (fp == -1)
 puts ("cannot open file") ;
 else
 close (fp) ;

Chapter 12: File Input/Output 457

}

(j) main()
{
 int fp ;
 fp = fopen ("students.c", READ | BINARY) ;
 if (fp == -1)
 puts ("cannot open file") ;
 else
 close (fp) ;
}

[B] Answer the following:

(a)

(b)

(c)

The macro FILE is defined in which of the following files:

1. stdlib.h
2. stdio.c
3. io.h
4. stdio.h

If a file contains the line “I am a boy\r\n” then on reading this
line into the array str[] using fgets() what would str[]
contain?

1. I am a boy\r\n\0
2. I am a boy\r\0
3. I am a boy\n\0
4. I am a boy

State True or False:

1. The disadvantage of High Level Disk I/O functions is that
the programmer has to manage the buffers.

2. If a file is opened for reading it is necessary that the file
must exist.

3. If a file opened for writing already exists its contents
would be overwritten.

458 Let Us C

4. For opening a file in append mode it is necessary that the
file should exist.

(d)

(e)

(f)

(g)

(h)

(i)

(j)

On opening a file for reading which of the following activities
are performed:

1. The disk is searched for existence of the file.
2. The file is brought into memory.
3. A pointer is set up which points to the first character in the

file.
4. All the above.

Is it necessary that a file created in text mode must always be
opened in text mode for subsequent operations?

State True or False:

A file opened in binary mode and read using fgetc() would
report the same number of characters in the file as reported by
DOS’s DIR command.

While using the statement,

fp = fopen ("myfile.c", "r") ;

what happens if,

− ‘myfile.c’ does not exist on the disk
− ‘myfile.c’ exists on the disk

What is the purpose of the library function fflush()?

While using the statement,

fp = fopen ("myfile.c", "wb") ;
what happens if,

− ‘myfile.c’ does not exist on the disk.
− ‘myfile.c’ exists on the disk

A floating-point array contains percentage marks obtained by
students in an examination. To store these marks in a file
‘marks.c’, in which mode would you open the file and why?

Chapter 12: File Input/Output 459

[C] Attempt the following:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Write a program to read a file and display contents with its
line numbers.

Write a program to find the size of a text file without
traversing it character by character.

Write a program to add the contents of one file at the end of
another.

Suppose a file contains student’s records with each record
containing name and age of a student. Write a program to read
these records and display them in sorted order by name.

Write a program to copy one file to another. While doing so
replace all lowercase characters to their equivalent uppercase
characters.

Write a program that merges lines alternately from two files
and writes the results to new file. If one file has less number
of lines than the other, the remaining lines from the larger file
should be simply copied into the target file.

Write a program to display the contents of a text file on the
screen. Make following provisions:

Display the contents inside a box drawn with opposite corner
co-ordinates being (0, 1) and (79, 23). Display the name of
the file whose contents are being displayed, and the page
numbers in the zeroth row. The moment one screenful of file
has been displayed, flash a message ‘Press any key...’ in 24th
row. When a key is hit, the next page’s contents should be
displayed, and so on till the end of file.

Write a program to encrypt/decrypt a file using:

460 Let Us C

(1) An offset cipher: In an offset cipher each character from

the source file is offset with a fixed value and then
written to the target file.

For example, if character read from the source file is ‘A’,
then convert this into a new character by offsetting ‘A’
by a fixed value, say 128, and then writing the new
character to the target file.

(2) A substitution cipher: In this each character read from the

source file is substituted by a corresponding
predetermined character and this character is written to
the target file.

For example, if character ‘A’ is read from the source file,
and if we have decided that every ‘A’ is to be substituted
by ‘!’, then a ‘!’ would be written to the target file in
place of every ‘A’ Similarly, every ‘B’ would be
substituted by ‘5’ and so on.

(i) In the file ‘CUSTOMER.DAT’ there are 100 records with the
following structure:

struct customer
{
 int accno ;
 char name[30] ;
 float balance ;
} ;
In another file ‘TRANSACTIONS.DAT’ there are several
records with the following structure:

struct trans
{
 int accno ,
 char trans_type ;

Chapter 12: File Input/Output 461

 float amount ;
} ;

The parameter trans_type contains D/W indicating deposit or
withdrawal of amount. Write a program to update
‘CUSTOMER.DAT’ file, i.e. if the trans_type is ‘D’ then
update the balance of ‘CUSTOMER.DAT’ by adding
amount to balance for the corresponding accno. Similarly, if
trans_type is ‘W’ then subtract the amount from balance.
However, while subtracting the amount make sure that the
amount should not get overdrawn, i.e. at least 100 Rs. Should
remain in the account.

(j)

(k)

There are 100 records present in a file with the following
structure:

struct date
{
 int d, m, y ;
} ;

struct employee
{
 int empcode[6] ;
 char empname[20] ;
 struct date join_date ;
 float salary ;
} ;

Write a program to read these records, arrange them in
ascending order of join_date and write them in to a target
file.

A hospital keeps a file of blood donors in which each record
has the format:
Name: 20 Columns
Address: 40 Columns

462 Let Us C

Age: 2 Columns
Blood Type: 1 Column (Type 1, 2, 3 or 4)

Write a program to read the file and print a list of all blood
donors whose age is below 25 and blood is type 2.

(l)

(m)

(n)

(o)

Given a list of names of students in a class, write a program to
store the names in a file on disk. Make a provision to display
the nth name in the list (n is data to be read) and to display all
names starting with S.

Assume that a Master file contains two fields, Roll no. and
name of the student. At the end of the year, a set of students
join the class and another set leaves. A Transaction file
contains the roll numbers and an appropriate code to add or
delete a student.

Write a program to create another file that contains the
updated list of names and roll numbers. Assume that the
Master file and the Transaction file are arranged in ascending
order by roll numbers. The updated file should also be in
ascending order by roll numbers.

In a small firm employee numbers are given in serial
numerical order, that is 1, 2, 3, etc.

− Create a file of employee data with following information:
employee number, name, sex, gross salary.

− If more employees join, append their data to the file.
− If an employee with serial number 25 (say) leaves, delete

the record by making gross salary 0.
− If some employee’s gross salary increases, retrieve the

record and update the salary.

Write a program to implement the above operations.

Given a text file, write a program to create another text file
deleting the words “a”, “the”, “an” and replacing each one of
them with a blank space.

Chapter 12: File Input/Output 463

(p)

(q)

(r)

You are given a data file EMPLOYEE.DAT with the
following record structure:

struct employee {
 int empno ;
 char name[30] ;
 int basic, grade ;
 } ;

Every employee has a unique empno and there are supposed
to be no gaps between employee numbers. Records are
entered into the data file in ascending order of employee
number, empno. It is intended to check whether there are
missing employee numbers. Write a program segment to read
the data file records sequentially and display the list of
missing employee numbers.

Write a program to carry out the following:

− To read a text file “TRIAL.TXT” consisting of a
maximum of 50 lines of text, each line with a maximum
of 80 characters.

− Count and display the number of words contained in the
file.

− Display the total number of four letter words in the text
file.

Assume that the end of a word may be a space, comma or a
full-stop followed by one or more spaces or a newline
character.

Write a program to read a list of words, sort the words in
alphabetical order and display them one word per line. Also
give the total number of words in the list. Output format
should be:
Total Number of words in the list is _______
Alphabetical listing of words is:

464 Let Us C

Assume the end of the list is indicated by ZZZZZZ and there
are maximum in 25 words in the Text file.

(s)

(t)

Write a program to carry out the following:

(a) Read a text file ‘INPUT.TXT’
(b) Print each word in reverse order

Example,

Input: INDIA IS MY COUNTRY
Output: AIDNI SI YM YRTNUOC

Assume that each word length is maximum of 10 characters
and each word is separated by newline/blank characters.

Write a C program to read a large text file ‘NOTES.TXT’ and
print it on the printer in cut-sheets, introducing page breaks at
the end of every 50 lines and a pause message on the screen at
the end of every page for the user to change the paper.

13 More Issues In
 Input/Output

• Using argc and argv
• Detecting Errors in Reading/Writing
• Standard I/O Devices
• I/O Redirection

Redirecting the Output
Redirecting the Input
Both Ways at Once

• Summary
• Exercise

465

466 Let Us C

n Chapters 11 and 12 we saw how Console I/O and File I/O are
done in C. There are still some more issues related with
input/output that remain to be understood. These issues help in

making the I/O operations more elegant.
I

Using argc and argv
To execute the file-copy programs that we saw in Chapter 12 we
are required to first type the program, compile it, and then execute
it. This program can be improved in two ways:

(a)

(b)

There should be no need to compile the program every time to
use the file-copy utility. It means the program must be
executable at command prompt (A> or C> if you are using
MS-DOS, Start | Run dialog if you are using Windows and $
prompt if you are using Unix).

Instead of the program prompting us to enter the source and
target filenames, we must be able to supply them at command
prompt, in the form:

filecopy PR1.C PR2.C

where, PR1.C is the source filename and PR2.C is the target
filename.

The first improvement is simple. In MS-DOS, the executable file
(the one which can be executed at command prompt and has an
extension .EXE) can be created in Turbo C/C++ by using the key
F9 to compile the program. In VC++ compiler under Windows
same can be done by using F7 to compile the program. Under Unix
this is not required since in Unix every time we compile a program
we always get an executable file.

The second improvement is possible by passing the source
filename and target filename to the function main(). This is
illustrated below:

Chapter 13: More Issues In Input/Output 467

#include "stdio.h"
main (int argc, char *argv[])
{
 FILE *fs, *ft ;
 char ch ;

 if (argc != 3)
 {
 puts ("Improper number of arguments") ;
 exit() ;
 }

 fs = fopen (argv[1], "r") ;
 if (fs == NULL)
 {
 puts ("Cannot open source file") ;
 exit() ;
 }

 ft = fopen (argv[2], "w") ;
 if (ft == NULL)
 {
 puts ("Cannot open target file") ;
 fclose (fs) ;
 exit() ;
 }

 while (1)
 {
 ch = fgetc (fs) ;

 if (ch == EOF)
 break ;
 else
 fputc (ch, ft) ;
 }

468 Let Us C

 fclose (fs) ;
 fclose (ft) ;
}

The arguments that we pass on to main() at the command prompt
are called command line arguments. The function main() can
have two arguments, traditionally named as argc and argv. Out of
these, argv is an array of pointers to strings and argc is an int
whose value is equal to the number of strings to which argv
points. When the program is executed, the strings on the command
line are passed to main(). More precisely, the strings at the
command line are stored in memory and address of the first string
is stored in argv[0], address of the second string is stored in
argv[1] and so on. The argument argc is set to the number of
strings given on the command line. For example, in our sample
program, if at the command prompt we give,

filecopy PR1.C PR2.C

then,

argc would contain 3
argv[0] would contain base address of the string “filecopy”
argv[1] would contain base address of the string “PR1.C”
argv[2] would contain base address of the string “PR2.C”

Whenever we pass arguments to main(), it is a good habit to
check whether the correct number of arguments have been passed
on to main() or not. In our program this has been done through,

if (argc != 3)
{
 printf ("Improper number of arguments") ;
 exit() ;
}

Chapter 13: More Issues In Input/Output 469

Rest of the program is same as the earlier file-copy program. This
program is better than the earlier file-copy program on two counts:

(a)

(b)

There is no need to recompile the program every time we
want to use this utility. It can be executed at command
prompt.
We are able to pass source file name and target file name to
main(), and utilize them in main().

One final comment... the while loop that we have used in our
program can be written in a more compact form, as shown below:

while ((ch = fgetc (fs)) != EOF)
 fputc (ch, ft) ;

This avoids the usage of an indefinite loop and a break statement
to come out of this loop. Here, first fgetc (fs) gets the character
from the file, assigns it to the variable ch, and then ch is compared
against EOF. Remember that it is necessary to put the expression

ch = fgetc (fs)

within a pair of parentheses, so that first the character read is
assigned to variable ch and then it is compared with EOF.

There is one more way of writing the while loop. It is shown
below:

while (!feof (fs))
{
 ch = fgetc (fs) ;
 fputc (ch, ft) ;
}

Here, feof() is a macro which returns a 0 if end of file is not
reached. Hence we use the ! operator to negate this 0 to the truth
value. When the end of file is reached feof() returns a non-zero

470 Let Us C

value, ! makes it 0 and since now the condition evaluates to false
the while loop gets terminated.

Note that in each one of them the following three methods for
opening a file are same, since in each one of them, essentially a
base address of the string (pointer to a string) is being passed to
fopen().

fs = fopen ("PR1.C" , "r") ;
fs = fopen (filename, "r") ;
fs = fopen (argv[1] , "r") ;

Detecting Errors in Reading/Writing
Not at all times when we perform a read or write operation on a
file are we successful in doing so. Naturally there must be a
provision to test whether our attempt to read/write was successful
or not.

The standard library function ferror() reports any error that might
have occurred during a read/write operation on a file. It returns a
zero if the read/write is successful and a non-zero value in case of
a failure. The following program illustrates the usage of ferror().

#include "stdio.h"
main()
{
 FILE *fp ;
 char ch ;

 fp = fopen ("TRIAL", "w") ;

 while (!feof (fp))
 {
 ch = fgetc (fp) ;
 if (ferror())
 {

Chapter 13: More Issues In Input/Output 471

 printf ("Error in reading file") ;
 break ;
 }
 else
 printf ("%c", ch) ;
 }

 fclose (fp) ;
}

In this program the fgetc() function would obviously fail first time
around since the file has been opened for writing, whereas fgetc()
is attempting to read from the file. The moment the error occurs
ferror() returns a non-zero value and the if block gets executed.
Instead of printing the error message using printf() we can use the
standard library function perror() which prints the error message
specified by the compiler. Thus in the above program the perror()
function can be used as shown below.

if (ferror())
{
 perror ("TRIAL") ;
 break ;
}

Note that when the error occurs the error message that is displayed
is:

TRIAL: Permission denied

This means we can precede the system error message with any
message of our choice. In our program we have just displayed the
filename in place of the error message.

472 Let Us C

Standard I/O Devices
To perform reading or writing operations on a file we need to use
the function fopen(), which sets up a file pointer to refer to this
file. Most OSs also predefine pointers for three standard files. To
access these pointers we need not use fopen(). These standard file
pointers are shown in Figure 13.1

 Standard File pointer Description

 stdin standard input device (Keyboard)
 stdout standard output device (VDU)
 stderr standard error device (VDU)

Figure 13.1

Thus the statement ch = fgetc (stdin) would read a character
from the keyboard rather than from a file. We can use this
statement without any need to use fopen() or fclose() function
calls.

Note that under MS-DOS two more standard file pointers are
available—stdprn and stdaux. They stand for standard printing
device and standard auxiliary device (serial port). The following
program shows how to use the standard file pointers. It reads a file
from the disk and prints it on the printer.

/* Prints file contents on printer */
#include "stdio.h"
main()
{
 FILE *fp ;
 char ch ;

Chapter 13: More Issues In Input/Output 473

 fp = fopen ("poem.txt", "r") ;

 if (fp == NULL)
 {
 printf ("Cannot open file") ;
 exit() ;
 }

 while ((ch = fgetc (fp)) != EOF)
 fputc (ch, stdprn) ;

 fclose (fp) ;
}

The statement fputc (ch, stdprn) writes a character read from the
file to the printer. Note that although we opened the file on the
disk we didn’t open stdprn, the printer. Standard files and their
use in redirection have been dealt with in more details in the next
section.

Note that these standard file pointers have been defined in the file
“stdio.h”. Therefore, it is necessary to include this file in the
program that uses these standard file pointers.

I/O Redirection
Most operating systems incorporate a powerful feature that allows
a program to read and write files, even when such a capability has
not been incorporated in the program. This is done through a
process called ‘redirection’.

Normally a C program receives its input from the standard input
device, which is assumed to be the keyboard, and sends its output
to the standard output device, which is assumed to be the VDU. In
other words, the OS makes certain assumptions about where input

474 Let Us C

should come from and where output should go. Redirection
permits us to change these assumptions.

For example, using redirection the output of the program that
normally goes to the VDU can be sent to the disk or the printer
without really making a provision for it in the program. This is
often a more convenient and flexible approach than providing a
separate function in the program to write to the disk or printer.
Similarly, redirection can be used to read information from disk
file directly into a program, instead of receiving the input from
keyboard.

To use redirection facility is to execute the program from the
command prompt, inserting the redirection symbols at appropriate
places. Let us understand this process with the help of a program.

Redirecting the Output

Let’s see how we can redirect the output of a program, from the
screen to a file. We’ll start by considering the simple program
shown below:

/* File name: util.c */
#include "stdio.h"<+>
main()
{
 char ch ;
 while ((ch = getc (stdin)) != EOF)
 putc (ch, stdout) ;
}

On compiling this program we would get an executable file
UTIL.EXE. Normally, when we execute this file, the putc()
function will cause whatever we type to be printed on screen, until
we don’t type Ctrl-Z, at which point the program will terminate, as

Chapter 13: More Issues In Input/Output 475

shown in the following sample run. The Ctrl-Z character is often
called end of file character.

C>UTIL.EXE
perhaps I had a wicked childhood,
perhaps I had a miserable youth,
but somewhere in my wicked miserable past,
there must have been a moment of truth ^Z
C>

Now let’s see what happens when we invoke this program from in
a different way, using redirection:

C>UTIL.EXE > POEM.TXT
C>

Here we are causing the output to be redirected to the file
POEM.TXT. Can we prove that this the output has indeed gone to
the file POEM.TXT? Yes, by using the TYPE command as
follows:

C>TYPE POEM.TXT
perhaps I had a wicked childhood,
perhaps I had a miserable youth,
but somewhere in my wicked miserable past,
there must have been a moment of truth
C>

There’s the result of our typing sitting in the file. The redirection
operator, ‘>’, causes any output intended for the screen to be
written to the file whose name follows the operator.

Note that the data to be redirected to a file doesn’t need to be typed
by a user at the keyboard; the program itself can generate it. Any
output normally sent to the screen can be redirected to a disk file.
As an example consider the following program for generating the
ASCII table on screen:

476 Let Us C

/* File name: ascii.c*/
main()
{
 int ch ;

 for (ch = 0 ; ch <= 255 ; ch++)
 printf ("\n%d %c", ch, ch) ;
}

When this program is compiled and then executed at command
prompt using the redirection operator,

C>ASCII.EXE > TABLE.TXT

the output is written to the file. This can be a useful capability any
time you want to capture the output in a file, rather than displaying
it on the screen.

DOS predefines a number of filenames for its own use. One of
these names in PRN, which stands for the printer. Output can be
redirected to the printer by using this filename. For example, if you
invoke the “ascii.exe” program this way:

C>ASCII.EXE > PRN

the ASCII table will be printed on the printer.

Redirecting the Input

We can also redirect input to a program so that, instead of reading
a character from the keyboard, a program reads it from a file. Let
us now see how this can be done.

To redirect the input, we need to have a file containing something
to be displayed. Suppose we use a file called NEWPOEM.TXT
containing the following lines:

Chapter 13: More Issues In Input/Output 477

Let's start at the very beginning,
A very good place to start!

We’ll assume that using some text editor these lines have been
placed in the file NEWPOEM.TXT. Now, we use the input
redirection operator ‘<’ before the file, as shown below:

C>UTIL.EXE < NEWPOEM.TXT
Let's start at the very beginning,
A very good place to start!
C>

The lines are printed on the screen with no further effort on our
part. Using redirection we’ve made our program UTIL.C perform
the work of the TYPE command.

Both Ways at Once

Redirection of input and output can be used together; the input for
a program can come from a file via redirection, at the same time its
output can be redirected to a file. Such a program is called a filter.
The following command demonstrates this process.

C>UTIL < NEWPOEM.TXT > POETRY.TXT

In this case our program receives the redirected input from the file
NEWPOEM.TXT and instead of sending the output to the screen it
would redirect it to the file POETRY.TXT.

Similarly to send the contents of the file NEWPOEM.TXT to the
printer we can use the following command:

C>UTIL < NEWPOEM.TXT > PRN

While using such multiple redirections don’t try to send output to
the same file from which you are receiving input. This is because

478 Let Us C

the output file is erased before it’s written to. So by the time we
manage to receive the input from a file it is already erased.

Redirection can be a powerful tool for developing utility programs
to examine or alter data in files. Thus, redirection is used to
establish a relationship between a program and a file. Another OS
operator can be used to relate two programs directly, so that the
output of one is fed directly into another, with no files involved.
This is called ‘piping’, and is done using the operator ‘|’, called
pipe. We won’t pursue this topic, but you can read about it in the
OS help/manual.

Summary
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(a)

We can pass parameters to a program at command line using
the concept of ‘command line arguments’.
The command line argument argv contains values passed to
the program, whereas, argc contains number of arguments.
We can use the standard file pointer stdin to take input from
standard input device such as keyboard.
We can use the standard file pointer stdout to send output to
the standard output device such as a monitor.
We can use the standard file pointers stdprn and stdaux to
interact with printer and auxiliary devices respectively.
Redirection allows a program to read from or write to files at
command prompt.
The operators < and > are called redirection operators.

Exercise

[A] Answer the following:

How will you use the following program to

− Copy the contents of one file into another.
− Print a file on the printer.
− Create a new file and add some text to it.

Chapter 13: More Issues In Input/Output 479

− Display the contents of an existing file.

#include "stdio.h"
main()
{
 char ch, str[10] ;
 while ((ch = getc (stdin)) != -1)
 putc (ch, stdout) ;
}

(b)

(c)

(a)

State True or False:

1. We can send arguments at command line even if we
define main() function without parameters.

2. To use standard file pointers we don’t need to open the
file using fopen().

3. Using stdaux we can send output to the printer if printer is
attached to the serial port.

4. The zeroth element of the argv array is always the name
of the exe file.

Point out the errors, if any, in the following program

main (int ac, char (*) av[])
{
 printf ("\n%d", ac) ;
 printf ("\n%s", av[0]) ;
}

[B] Attempt the following:

Write a program to carry out the following:

(a) Read a text file provided at command prompt
(b) Print each word in reverse order

For example if the file contains

INDIA IS MY COUNTRY
Output should be

480 Let Us C

AIDNI SI YM YRTNUOC

(b)

(c)

Write a program using command line arguments to search for
a word in a file and replace it with the specified word. The
usage of the program is shown below.

C> change <old word> <new word> <filename>

Write a program that can be used at command prompt as a
calculating utility. The usage of the program is shown below.

C> calc <switch> <n> <m>

Where, n and m are two integer operands. switch can be any
one of the arithmetic or comparison operators. If arithmetic
operator is supplied, the output should be the result of the
operation. If comparison operator is supplied then the output
should be True or False.

14 Operations On
 Bits

• Bitwise Operators

One’s Complement Operator
Right Shift Operator
Left Shift Operator
Bitwise AND Operator
Bitwise OR Operator
Bitwise XOR Operator

• The showbits() Function
• Summary
• Exercise

481

482 Let Us C

o far we have dealt with characters, integers, floats and their
variations. The smallest element in memory on which we are
able to operate as yet is a byte; and we operated on it by

making use of the data type char. However, we haven’t attempted
to look within these data types to see how they are constructed out
of individual bits, and how these bits can be manipulated. Being
able to operate on a bit level, can be very important in
programming, especially when a program must interact directly
with the hardware. This is because, the programming languages
are byte oriented, whereas hardware tends to be bit oriented. Let us
now delve inside the byte and see how it is constructed and how it
can be manipulated effectively. So let us take apart the byte... bit
by bit.

S

Bitwise Operators
One of C’s powerful features is a set of bit manipulation operators.
These permit the programmer to access and manipulate individual
bits within a piece of data. The various Bitwise Operators available
in C are shown in Figure 14.1.

 Operator Meaning

 ~ One’s complement
 >> Right shift
 << Left shift
 & Bitwise AND
 | Bitwise OR
 ^ Bitwise XOR(Exclusive OR)

 Figure 14.1

These operators can operate upon ints and chars but not on floats
and doubles. Before moving on to the details of the operators, let

Chapter 14: Operations On Bits 483

us first take a look at the bit numbering scheme in integers and
characters. Bits are numbered from zero onwards, increasing from
right to left as shown below:

7 6 5 4 3 2 1 0

0 1 2 3 12 11 10 9 8 7 6 5 4

Character

16-bit Integer

15 14 13

Figure 14.2

Throughout this discussion of bitwise operators we are going to
use a function called showbits(), but we are not going to show
you the details of the function immediately. The task of
showbits() is to display the binary representation of any integer or
character value.

We begin with a plain-jane example with showbits() in action.

/* Print binary equivalent of integers using showbits() function */
main()
{
 int j ;

 for (j = 0 ; j <<= 5 ; j++)
 {
 printf ("\nDecimal %d is same as binary ", j) ;
 showbits (j) ;
 }

484 Let Us C

}
And here is the output...

Decimal 0 is same as binary 0000000000000000
Decimal 1 is same as binary 0000000000000001
Decimal 2 is same as binary 0000000000000010
Decimal 3 is same as binary 0000000000000011
Decimal 4 is same as binary 0000000000000100
Decimal 5 is same as binary 0000000000000101

Let us now explore the various bitwise operators one by one.

One’s Complement Operator

On taking one’s complement of a number, all 1’s present in the
number are changed to 0’s and all 0’s are changed to 1’s. For
example one’s complement of 1010 is 0101. Similarly, one’s
complement of 1111 is 0000. Note that here when we talk of a
number we are talking of binary equivalent of the number. Thus,
one’s complement of 65 means one’s complement of 0000 0000
0100 0001, which is binary equivalent of 65. One’s complement of
65 therefore would be, 1111 1111 1011 1110. One’s complement
operator is represented by the symbol ~. Following program shows
one’s complement operator in action.

main()
{
 int j, k ;

 for (j = 0 ; j <= 3 ; j++)
 {
 printf ("\nDecimal %d is same as binary ", j) ;
 showbits (j) ;

 k = ~j ;
 printf ("\nOne’s complement of %d is ", j) ;

Chapter 14: Operations On Bits 485

 showbits (k) ;
 }
}

And here is the output of the above program...

Decimal 0 is same as binary 0000000000000000
One’s complement of 0 is 1111111111111111
Decimal 1 is same as binary 0000000000000001
One’s complement of 1 is 1111111111111110
Decimal 2 is same as binary 0000000000000010
One’s complement of 2 is 1111111111111101
Decimal 3 is same as binary 0000000000000011
One’s complement of 3 is 1111111111111100

In real-world situations where could the one’s complement
operator be useful? Since it changes the original number beyond
recognition, one potential place where it can be effectively used is
in development of a file encryption utility as shown below:

/* File encryption utility */
#include "stdio.h"
main()
{
 encrypt() ;
}

encrypt()
{
 FILE *fs, *ft ;
 char ch ;

 fs = fopen ("SOURCE.C", "r") ; /* normal file */
 ft = fopen ("TARGET.C”, "w") ; /* encrypted file */

 if (fs == NULL || ft == NULL)
 {

486 Let Us C

 printf ("\nFile opening error!") ;
 exit (1) ;
 }

 while ((ch = getc (fs)) != EOF)
 putc (~ch, ft) ;

 fclose (fs) ;
 fclose (ft) ;
}

How would you write the corresponding decrypt function? Would
there be any problem in tackling the end of file marker? It may be
recalled here that the end of file in text files is indicated by a
character whose ASCII value is 26.

Right Shift Operator

The right shift operator is represented by >>. It needs two
operands. It shifts each bit in its left operand to the right. The
number of places the bits are shifted depends on the number
following the operator (i.e. its right operand).

Thus, ch >> 3 would shift all bits in ch three places to the right.
Similarly, ch >> 5 would shift all bits 5 places to the right.

For example, if the variable ch contains the bit pattern 11010111,
then, ch >> 1 would give 01101011 and ch >> 2 would give
00110101.

Note that as the bits are shifted to the right, blanks are created on
the left. These blanks must be filled somehow. They are always
filled with zeros. The following program demonstrates the effect
of right shift operator.

main()
{

Chapter 14: Operations On Bits 487

 int i = 5225, j, k ;

 printf ("\nDecimal %d is same as binary ", i) ;
 showbits (i) ;

 for (j = 0 ; j <= 5 ; j++)
 {
 k = i >>j ;
 printf ("\n%d right shift %d gives ", i, j) ;
 showbits (k) ;
 }
}

The output of the above program would be...

Decimal 5225 is same as binary 0001010001101001
5225 right shift 0 gives 0001010001101001
5225 right shift 1 gives 0000101000110100
5225 right shift 2 gives 0000010100011010
5225 right shift 3 gives 0000001010001101
5225 right shift 4 gives 0000000101000110
5225 right shift 5 gives 0000000010100011

Note that if the operand is a multiple of 2 then shifting the operand
one bit to right is same as dividing it by 2 and ignoring the
remainder. Thus,

64 >> 1 gives 32
64 >> 2 gives 16
128 >> 2 gives 32

but,

27 >> 1 is 13
49 >> 1 is 24 .

488 Let Us C

A Word of Caution

In the explanation a >> b if b is negative the result is
unpredictable. If a is negative than its left most bit (sign bit) would
be 1. On some computer right shifting a would result in extending
the sign bit. For example, if a contains -1, its binary representation
would be 1111111111111111. Without sign extension, the
operation a >> 4 would be 0000111111111111. However, on the
machine on which we executed this expression the result turns out
to be 1111111111111111. Thus the sign bit 1 continues to get
extended.

Left Shift Operator

This is similar to the right shift operator, the only difference being
that the bits are shifted to the left, and for each bit shifted, a 0 is
added to the right of the number. The following program should
clarify my point.

main()
{
 int i = 5225, j, k ;

 printf ("\nDecimal %d is same as ", i) ;
 showbits (i) ;

 for (j = 0 ; j <= 4 ; j++)
 {
 k = i <<j ;
 printf ("\n%d left shift %d gives ", i, j) ;
 showbits (k) ;
 }
}

The output of the above program would be...

Decimal 5225 is same as binary 0001010001101001

Chapter 14: Operations On Bits 489

5225 left shift 0 gives 0001010001101001
5225 left shift 1 gives 0010100011010010
5225 left shift 2 gives 0101000110100100
5225 left shift 3 gives 1010001101001000
5225 left shift 4 gives 0100011010010000

Having acquainted ourselves with the left shift and right shift
operators, let us now find out the practical utility of these
operators.

In DOS/Windows the date on which a file is created (or modified)
is stored as a 2-byte entry in the 32 byte directory entry of that file.
Similarly, a 2-byte entry is made of the time of creation or
modification of the file. Remember that DOS/Windows doesn’t
store the date (day, month, and year) of file creation as a 8 byte
string, but as a codified 2 byte entry, thereby saving 6 bytes for
each file entry in the directory. The bitwise distribution of year,
month and date in the 2-byte entry is shown in Figure 14.3.

month

0 1 2 3 4 5 6 7 9 8 10 11 12 13 15 14
Y Y Y Y Y Y Y M M M M D D D D D

day year

Figure 14.3

DOS/Windows converts the actual date into a 2-byte value using
the following formula:

date = 512 * (year - 1980) + 32 * month + day

Suppose 09/03/1990 is the date, then on conversion the date will
be,

date = 512 * (1990 - 1980) + 32 * 3 + 9 = 5225

490 Let Us C

The binary equivalent of 5225 is 0001 0100 0110 1001. This
binary value is placed in the date field in the directory entry of the
file as shown below.

Figure 14.4

0 0 0 1 0 1 0 0 0 1 1 0 1 0 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

month day year

Just to verify this bit distribution, let us take the bits representing
the month,

month = 0011
 = 1 * 2 + 1 * 1
 = 3

Similarly, the year and the day can also be verified.

When we issue the command DIR or use Windows Explorer to list
the files, the file’s date is again presented on the screen in the
usual date format of mm/dd/yy. How does this integer to date
conversion take place? Obviously, using left shift and right shift
operators.

When we take a look at Figure 14.4 depicting the bit pattern of the
2- byte date field, we see that the year, month and day exist as a
bunch of bits in contiguous locations. Separating each of them is a
matter of applying the bitwise operators.

For example, to get year as a separate entity from the two bytes
entry we right shift the entry by 9 to get the year. Just see, how...

Chapter 14: Operations On Bits 491

0 1 2 9 8 7 6 5 4 3 10 11 12 13 15 14
0 0 0 1 0 1 0 0 0 1 1 0 1 0 0

month day year

1

year

0 1 2 9 8 7 6 5 4 3 10 11 12 13 15 14
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Right shifting by 9 gives

Figure 14.5

On similar lines, left shifting by 7, followed by right shifting by 12
yields month.

492 Let Us C

0 1 2 9 8 7 6 5 4 3 10 11 12 13 15 14

month

0 1 0 1 0 1 1 0 0 0

year day month

0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0

Left shifting by 7 gives,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Right shifting by 12 gives,

day month

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1

 Figure 14.6

Finally, for obtaining the day, left shift date by 11 and then right
shift the result by 11. Left shifting by 11 gives
0100100000000000. Right shifting by 11 gives
0000000000001001.

This entire logic can be put into a program as shown below:

/* Decoding date field in directory entry using bitwise operators */
main()
{
 unsigned int d = 9, m = 3, y = 1990, year, month, day, date ;

 date = (y - 1980) * 512 + m * 32 + d ;
 printf ("\nDate = %u", date) ;

Chapter 14: Operations On Bits 493

 year = 1980 + (date >> 9) ;
 month = ((date << 7) >> 12) ;
 day = ((date << 11) >> 11) ;
 printf ("\nYear = %u ", year) ;
 printf ("Month = %u ", month) ;
 printf ("Day = %u", day) ;
}

And here is the output...

Date = 5225
Year = 1990 Month = 3 Day = 9

Bitwise AND Operator

This operator is represented as &. Remember it is different than
&&, the logical AND operator. The & operator operates on two
operands. While operating upon these two operands they are
compared on a bit-by-bit basis. Hence both the operands must be
of the same type (either char or int). The second operand is often
called an AND mask. The & operator operates on a pair of bits to
yield a resultant bit. The rules that decide the value of the resultant
bit are shown below:

 First bit Second bit First bit & Second bit

 0 0 0
 0 1 0
 1 0 0
 1 1 1

Figure 14.7

494 Let Us C

This can be represented in a more understandable form as a ‘Truth
Table’ shown in Figure 14.8.

 & 0 1
 0 0 0
 1 0 1

Figure 14.8

The example given below shows more clearly what happens while
ANDing one operand with another. The rules given in the Figure
14.8 are applied to each pair of bits one by one.

7

this result

With this operand
yields

This operand when
ANDed bitwise

1 0 2 3 7 6 5 4
1 0 0 0 0 0 0 1

1 0 2 3 6 5 4
1 1 0 0 0 0 1 1

2 1 0 7 6 5 4
1 0 0 1

3
0 1 0 1

Figure 14.9

Work through the Truth Table and confirm that the result obtained
is really correct.

Thus, it must be clear that the operation is being performed on
individual bits, and the operation performed on one pair of bits is

Chapter 14: Operations On Bits 495

completely independent of the operation performed on the other
pairs.

Probably, the best use of the AND operator is to check whether a
particular bit of an operand is ON or OFF. This is explained in the
following example.

Suppose, from the bit pattern 10101101 of an operand, we want to
check whether bit number 3 is ON (1) or OFF (0). Since we want
to check the bit number 3, the second operand for the AND
operation should be 1 * 23, which is equal to 8. This operand can
be represented bitwise as 00001000.

Then the ANDing operation would be,

10101101 Original bit pattern
00001000 AND mask

00001000 Resulting bit pattern

The resulting value we get in this case is 8, i.e the value of the
second operand. The result turned out to be 8 since the third bit of
the first operand was ON. Had it been OFF, the bit number 3 in the
resulting bit pattern would have evaluated to 0 and the complete
bit pattern would have been 00000000.

Thus, depending upon the bit number to be checked in the first
operand we decide the second operand, and on ANDing these two
operands the result decides whether the bit was ON or OFF. If the
bit is ON (1), the resulting value turns out to be a non-zero value
which is equal to the value of second operand, and if the bit is OFF
(0) the result is zero as seen above. The following program puts
this logic into action.

/* To test whether a bit in a number is ON or OFF */
main()
{

496 Let Us C

 int i = 65, j ;

 printf ("\nvalue of i = %d", i) ;
 j = i & 32 ;

 if (j == 0)
 printf ("\nand its fifth bit is off") ;
 else
 printf ("\nand its fifth bit is on") ;

 j = i & 64 ;

 if (j == 0)
 printf ("\nwhereas its sixth bit is off") ;
 else
 printf ("\nwhereas its sixth bit is on") ;
}

And here is the output...

Value of i = 65
and its fifth bit is off
whereas its sixth bit is on

In every file entry present in the directory, there is an attribute
byte. The status of a file is governed by the value of individual bits
in this attribute byte. The AND operator can be used to check the
status of the bits of this attribute byte. The meaning of each bit in
the attribute byte is shown in Figure 14.10.

Chapter 14: Operations On Bits 497

Bit numbers

7 6 5 4 3 2 1 0

Meaning

 1 Read only
 1 . Hidden
 1 . . System
 1 . . . Volume label entry
 . . . 1 Sub-directory entry
 . . 1 Archive bit
 . 1 Unused
 1 Unused

Figure 14.10

Now, suppose we want to check whether a file is a hidden file or
not. A hidden file is one, which is never shown in the directory,
even though it exists on the disk. From the above bit classification
of attribute byte, we only need to check whether bit number 1 is
ON or OFF.

So, our first operand in this case becomes the attribute byte of the
file in question, whereas the second operand is the 1 * 21 = 2, as
discussed earlier. Similarly, it can be checked whether the file is a
system file or not, whether the file is read-only file or not, and so
on.

The second, and equally important use of the AND operator is in
changing the status of the bit, or more precisely to switch OFF a
particular bit.

498 Let Us C

If the first operand happens to be 00000111, then to switch OFF
bit number 1, our AND mask bit pattern should be 11111101. On
applying this mask, we get,

00000111 Original bit pattern
11111101 AND mask

00000101 Resulting bit pattern

Here in the AND mask we keep the value of all other bits as 1
except the one which is to be switched OFF (which is purposefully
kept as 0). Therefore, irrespective of whether the first bit is ON or
OFF previously, it is switched OFF. At the same time the value 1
provided in all the other bits of the AND mask (second operand)
keeps the bit values of the other bits in the first operand unaltered.

Let’s summarize the uses of bitwise AND operator:

(a)

(b)

It is used to check whether a particular bit in a number is ON
or OFF.
It is used to turn OFF a particular bit in a number.

Bitwise OR Operator

Another important bitwise operator is the OR operator which is
represented as |. The rules that govern the value of the resulting bit
obtained after ORing of two bits is shown in the truth table below.

 | 0 1

 0 0 1
 1 1 1

 Figure 14.11

Chapter 14: Operations On Bits 499

Using the Truth table confirm the result obtained on ORing the
two operands as shown below.

11010000 Original bit pattern
00000111 OR mask

11010111 Resulting bit pattern

Bitwise OR operator is usually used to put ON a particular bit in a
number.

Let us consider the bit pattern 11000011. If we want to put ON bit
number 3, then the OR mask to be used would be 00001000. Note
that all the other bits in the mask are set to 0 and only the bit,
which we want to set ON in the resulting value is set to 1.

Bitwise XOR Operator

The XOR operator is represented as ^ and is also called an
Exclusive OR Operator. The OR operator returns 1, when any one
of the two bits or both the bits are 1, whereas XOR returns 1 only
if one of the two bits is 1. The truth table for the XOR operator is
given below.

 ^ 0 1
 0 0 1
 1 1 0

 Figure 14.12

XOR operator is used to toggle a bit ON or OFF. A number
XORed with another number twice gives the original number. This
is shown in the following program.

500 Let Us C

main()
{
 int b = 50 ;

 b = b ^ 12 ;
 printf ("\n%d", b) ; /* this will print 62 */

 b = b ^ 12 ;
 printf ("\n%d", b) ; /* this will print 50 */
}

The showbits() Function
We have used this function quite often in this chapter. Now we
have sufficient knowledge of bitwise operators and hence are in a
position to understand it. The function is given below followed by
a brief explanation.

showbits (int n)
{
 int i, k, andmask ;

 for (i = 15 ; i >= 0 ; i--)
 {
 andmask = 1 << i ;
 k = n & andmask ;

 k == 0 ? printf ("0") : printf ("1") ;
 }
}

All that is being done in this function is using an AND operator
and a variable andmask we are checking the status of individual
bits. If the bit is OFF we print a 0 otherwise we print a 1.

First time through the loop, the variable andmask will contain the
value 1000000000000000, which is obtained by left-shifting 1,

Chapter 14: Operations On Bits 501

fifteen places. If the variable n’s most significant bit is 0, then k
would contain a value 0, otherwise it would contain a non-zero
value. If k contains 0 then printf() will print out 0 otherwise it
will print out 1.

On the second go-around of the loop, the value of i is decremented
and hence the value of andmask changes, which will now be
0100000000000000. This checks whether the next most significant
bit is 1 or 0, and prints it out accordingly. The same operation is
repeated for all bits in the number.

Summary
(a)

(b)

(c)

(d)

(e)

(f)
(g)

(a)

To help manipulate hardware oriented data—individual bits
rather than bytes a set of bitwise operators are used.
The bitwise operators include operators like one’s
complement, right-shift, left-shift, bitwise AND, OR, and
XOR.
The one’s complement converts all zeros in its operand to 1s
and all 1s to 0s.
The right-shift and left-shift operators are useful in
eliminating bits from a number—either from the left or from
the right.
The bitwise AND operators is useful in testing whether a bit is
on/off and in putting off a particular bit.
The bitwise OR operator is used to turn on a particular bit.
The XOR operator works almost same as the OR operator
except one minor variation.

Exercise

[A] Answer the following:

The information about colors is to be stored in bits of a char
variable called color. The bit number 0 to 6, each represent 7
colors of a rainbow, i.e. bit 0 represents violet, 1 represents

502 Let Us C

indigo, and so on. Write a program that asks the user to enter
a number and based on this number it reports which colors in
the rainbow does the number represents.

(b)

(c)

A company planning to launch a new newspaper in market
conducts a survey. The various parameters considered in the
survey were, the economic status (upper, middle, and lower
class) the languages readers prefer (English, Hindi, Regional
language) and category of paper (daily, supplement, tabloid).
Write a program, which reads data of 10 respondents through
keyboard, and stores the information in an array of integers.
The bit-wise information to be stored in an integer is given
below:

Bit Number Information

 0 Upper class
 1 Middle class
 2 Lower class
 3 English
 4 Hindi
 5 Regional Language
 6 Daily
 7 Supplement
 8 Tabloid

At the end give the statistical data for number of persons who
read English daily, number of upper class people who read
tabloid and number of regional language readers.

In an inter-college competition, various sports and games are
played between different colleges like cricket, basketball,
football, hockey, lawn tennis, table tennis, carom and chess.
The information regarding the games won by a particular
college is stored in bit numbers 0, 1, 2, 3, 4, 5, 6, 7 and 8
respectively of an integer variable called game. The college

Chapter 14: Operations On Bits 503

that wins in 5 or more than 5 games is awarded the Champion
of Champions trophy. If a number is entered through the
keyboard, then write a program to find out whether the
college won the Champion of the Champions trophy or not,
along with the names of the games won by the college.

(d)

(e)

An animal could be either a canine (dog, wolf, fox, etc.), a
feline (cat, lynx, jaguar, etc.), a cetacean (whale, narwhal,
etc.) or a marsupial (koala, wombat, etc.). The information
whether a particular animal is canine, feline, cetacean, or
marsupial is stored in bit number 0, 1, 2 and 3 respectively of
a integer variable called type. Bit number 4 of the variable
type stores the information about whether the animal is
Carnivore or Herbivore.

For the following animal, complete the program to determine
whether the animal is a herbivore or a carnivore. Also
determine whether the animal is a canine, feline, cetacean or a
marsupial.

struct animal
{
 char name[30] ;
 int type ;
}
struct animal a = { "OCELOT", 18 } ;

The time field in the directory entry is 2 bytes long.
Distribution of different bits which account for hours, minutes
and seconds is given below. Write a function which would
receive the two-byte time entry and return to the calling
function, the hours, minutes and seconds.

504 Let Us C

 Figure 14.13

H H H H H M M M M M M S S S S S
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(f)

(g)

In order to save disk space information about student is stored
in an integer variable. If bit number 0 is on then it indicates Ist
year student, bit number 1 to 3 stores IInd year, IIIrd year and
IVth year student respectively. The bit number 4 to 7 stores
stream Mechanical, Chemical, Electronics and IT. Rest of the
bits store room number. Based on the given data, write a
program that asks for the room number and displays the
information about the student, if its data exists in the array.
The contents of array are,

int data[] = { 273, 548, 786, 1096 } ;

What will be the output of the following program:

main()
{
 int i = 32, j = 65, k, l, m, n, o, p ;
 k = i | 35 ; l = ~k ; m = i & j ;
 n = j ^ 32 ; o = j << 2 ; p = i >> 5 ;
 printf ("\nk = %d l = %d m = %d", k, l, m) ;
 printf ("\nn = %d o = %d p = %d", n, o, p) ;
}

16 C Under Windows

• Which Windows…
• Integers
• The Use of typedef
• Pointers in the 32-bit World

Memory Management
Device Access

• DOS Programming Model
• Windows Programming Model

Event Driven Model
• Windows Programming, a Closer Look
• The First Windows Program
• Hungarian Notation
• Summary
• Exercise

535

536 Let Us C

o far we have learnt every single keyword, operator and
instruction available in C. Thus we are through with the
language elements that were there to learn. We did all this

learning by compiling our programs using a 16-bit compiler like
Turbo C/C++. Now it is time to move on to more serious stuff. To
make a beginning one has to take a very important decision—
should we attempt to build programs that are targeted towards 16-
bit environments like MS-DOS or 32-bit environments like
Windows/Linux. Obviously we should choose the 32-bit platform
because that is what is in commercial use today and would remain
so until 64-bit environment takes over in future. That raises a very
important question—is it futile to learn C programming using 16-
bit compiler like Turbo C/C++? Absolutely not! The typical 32-bit
environment offers so many features that the beginner is likely to
feel lost. Contrasted with this, 16-bit compilers offer a very simple
environment that a novice can master quickly.

S

Now that the C fundamentals are out of the way and you are
confident about the language features it is time for us to delve into
the modern 32-bit operating environments. In today’s commercial
world 16-bit operating environments like DOS are more or less
dead. More and more software is being created for 32-bit
environments like Windows and Linux. In this chapter we would
explore how C programming is done under Windows. Chapters 20
& 21 are devoted to exploring C under Linux.

Which Windows…
To a common user the differences amongst various versions of
Windows like Windows 95,98, ME, NT, 2000, XP, Server 2003 is
limited to only visual appearances—things like color of the title
bar, shape of the buttons, desktop, task bar, programs menu etc.
But the truth is much farther than that. Architecturally there are
huge differences amongst them. So many are the differences that
Microsoft categorizes the different versions under two major
heads—Consumer Windows and Windows NT Family. Windows

Chapter 16: C Under Windows 537

95, 98, ME fall under the Consumer Windows, whereas Windows
NT, 2000, XP, Server 2003 fall under the Windows NT Family.
Consumer Windows was targeted towards the home or small office
users, whereas NT family was targeted towards business users.
Microsoft no longer provides support for Consumer Windows.
Hence in this book we would concentrate only on NT Family
Windows. So in the rest of this book whenever I refer to Windows
I mean Windows NT family, unless explicitly specified.

Before we start writing C programs under Windows let us first see
some of the changes that have happened under Windows
environment.

Integers
Under 16-bit environment the size of integer is of 2 bytes. As
against this, under 32-bit environment an integer is of 4 bytes.
Hence its range is -2147483648 to +2147483647. Thus there is no
difference between an int and a long int. But what if we wish to
store the age of a person in an integer? It would be improper to
sacrifice a 4-byte integer when we know that the number to be
stored in it is hardly going to exceed hundred. In such as case it
would be more sensible to use a short int since it is only 2 bytes
long.

 The Use of typedef
Take a look at the following declarations:

COLORREF color ;
HANDLE h ;
WPARAM w ;
LPARAM l ;
BOOL b ;

538 Let Us C

Are COLORREF, HANDLE, etc. new datatypes that have been
added in C under Windows compiler? Not at all. They are merely
typedef’s of the normal integer datatype.

A typical C under Windows program would contain several such
typedefs. There are two reasons why Windows-based C programs
heavily make use of typedefs. These are:

(a)

(b)

A typical Windows program is required to perform several
complex tasks. For example a program may print documents,
send mails, perform file I/O, manage multiple threads of
execution, draw in a window, play sound files, perform
operations over the network apart from normal data
processing tasks. Naturally a program that carries out so many
tasks would be very big in size. In such a program if we start
using the normal integer data type to represent variables that
hold different entities we would soon lose track of what that
integer value actually represents. This can be overcome by
suitably typedefining the integer as shown above.

At several places in Windows programming we are required
to gather and work with dissimilar but inter-related data. This
can be done using a structure. But when we define any
structure variable we are required to precede it with the
keyword struct. This can be avoided by using typedef as
shown below:

struct rect
{
 int top ;
 int left ;
 int right ;
 int bottom ;
} ;

typedef struct rect RECT ;
typedef struct rect* PRECT ;

Chapter 16: C Under Windows 539

RECT r ;
PRECT pr ;

What have we achieved out of this? It makes user-defined
data types like structures look, act and behave similar to
standard data types like integers, floats, etc. You would agree
that the following declarations

RECT r ;
int i ;

are more logical than

struct RECT r ;
int i ;

Imagine a situation where each programmer typedefs the integer
to represent a color in different ways. Some of these could be as
follows:

typedef int COL ;
typedef int COLOR ;
typedef int COLOUR ;
typedef int COLORREF ;

To avoid this chaos Microsoft has done several typedefs for
commonly required entities in Windows programming. All these
have been stored in header files. These header files are provided as
part of 32-bit compiler like Visual C++.

Pointers in the 32-bit World
In a 16-bit world (like MS-DOS) we could run only one
application at a time. If we were to run another program we were
required to terminate the first one before launching the second. As
only one program (task) could run at a time this environment was

540 Let Us C

called single-tasking environment. Since only one program could
run at any given time entire resources of the machine like memory
and hardware devices were accessible to this program. Under 32-
bit environment like Windows several programs reside and work
in memory at the same time. Hence it is known as a multi-tasking
environment. But the moment there are multiple programs running
in memory there is a possibility of conflict if two programs
simultaneously access the machine resources. To prevent this,
Windows does not permit any application direct access to any
machine resource. To channelize the access without resulting into
conflict between applications several new mechanisms were
created in the Microprocessor & OS. This had a direct bearing on
the way the application programs are created. This is not a
Windows OS book. So we would restrict our discussion about the
new mechanisms that have been introduced in Windows to topics
that are related, to C programming. These topics are ‘Memory
Management and Device Access’.

Memory Management

Since users have become more demanding, modern day
applications have to contend with these demands and provide
several features in them. To add to this, under Windows several
such applications run in memory simultaneously. The maximum
allowable memory—1 MB—that was used in 16-bit environment
was just too small for this. Hence Windows had to evolve a new
memory management model. Since Windows runs on 32-bit
microprocessors each CPU register is 32-bit long. Whenever we
store a value at a memory location the address of this memory
location has to be stored in the CPU register at some point in time.
Thus a 32-bit address can be stored in these registers. This means
that we can store 232 unique addresses in the registers at different
times. As a result, we can access 4 GB of memory locations using
32-bit registers. As pointers store addresses, every pointer under
32-bit environment also became a 4-byte entity.

Chapter 16: C Under Windows 541

However, if we decide to install 4 GB memory it would cost a lot.
Hence Windows uses a memory model which makes use of as
much of physical memory (say 128 MB) as has been installed and
simulates the balance amount of memory (4 GB – 128 MB) on the
hard disk. Be aware that this balance memory is simulated as and
when the need to do so arises. Thus memory management is
demand based.

Note that programs cannot execute straight-away from hard disk.
They have to be first brought into physical memory before they
can get executed. Suppose there are multiple programs already in
memory and a new program starts executing. If this new program
needs more memory than what is available right now, then some of
the existing programs (or their parts) would be transferred to the
disk in order to free the physical memory to accommodate the new
program. This operation is often called page-out operation. Here
page stands for a block of memory (usually of size 4096 bytes).
When that part of the program that was paged out is needed it is
brought back into memory (called page-in operation) and some
other programs (or their parts) are paged out. This keeps on
happening without a common user’s knowledge all the time while
working with Windows. A few more facts that you must note
about paging are as follows:

(a)

(b)

Part of the program that is currently executing might also be
paged out to the disk.

When the program is paged in (from disk to memory) there is
no guarantee that it would be brought back to the same
physical location where it was before it was paged out.

Now imagine how the paging operations would affect our
programming. Suppose we have a pointer pointing to some data
present in a page. If this page gets paged out and is later paged in
to a different physical location then the pointer would obviously
have a wrong address. Hence under Windows the pointer never
holds the physical address of any memory location. It always holds
a virtual address of that location. What is this virtual address? At

542 Let Us C

its name suggests it is certainly not a real address. It is a number,
which contains three parts. These parts when used in conjunction
with a CPU register called CR3 and contents of two tables called
Page Directory Table and Page Table leads to the actual physical
address. This is shown in Figure 16.1.

Figure 16.1

The CR3 register holds the physical location of Page Directory
Table. The left part of the 32-bit virtual address holds the index
into the Page Directory Table. The value present at this index is
the starting address of the Page Table. The middle part of the 32-
bit virtual address holds the index into the Page Table. The value
present at this index is the starting address of the physical page in
memory. The right part of the 32-bit virtual address holds the byte

P0
P1

Pn

31 0
Page Dir. Index Page Table Index Page Byte Offset

21 11

Page Directory Page Table Target Page
PT0

PFN n
PT1

PT n

PFN 0

…

Page Fram
es …

Page Directory
Register

Physical Memory

Chapter 16: C Under Windows 543

offset (from the start of the page) of the physical memory location
to be accessed.

Note that the CR3 register is not accessible from an application.
Hence an application can never directly reach a physical address.
Also, as the paging activity is going on the OS would suitably keep
updating the values in the two tables.

Device Access

All devices under Windows are shared amongst all the running
programs. Hence no program is permitted a direct access to any of
the devices. The access to a device is routed through a device
driver program, which finally accesses the device. There is a
standard way in which an application can communicate with the
device driver. It is device driver’s responsibility to ensure that
multiple requests coming from different applications are handled
without causing any conflict. This standard way of communication
is discussed in detail in Chapter 17.

DOS Programming Model
Typical 16-bit environments like DOS use a sequential
programming model. In this model programs are executed from
top to bottom in an orderly fashion. The path along which the
control flows from start to finish may vary during each execution
depending on the input that the program receives or the conditions
under which it is run. However, the path remains fairly predictable.
C programs written in this model begin execution with main()
(often called entry point) and then call other functions present in
the program. If you assume some input data you can easily walk
through the program from beginning to end. In this programming
model it is the program and not the operating system that
determines which function gets called and when. The operating
system simply loads and executes the program and then waits for it
to finish. If the program wishes it can take help of the OS to carry

544 Let Us C

out jobs like console I/O, file I/O, printing, etc. For other
operations like generating graphics, carrying out serial
communication, etc. the program has to call another set of
functions called ROM-BIOS functions.

Unfortunately the DOS functions and the BIOS functions do not
have any names. Hence to call them the program had to use a
mechanism called interrupts. This is a messy affair since the
programmer has to remember interrupt numbers for calling
different functions. Moreover, communication with these functions
has to be done using CPU registers. This lead to lot of difficulties
since different functions use different registers for communication.
To an extent these difficulties are reduced by providing library
functions that in turn call the DOS/BIOS functions using
interrupts. But the library doesn’t have a parallel function for every
DOS/BIOS function. DOS functions either call BIOS functions or
directly access the hardware.

At times the programs are needed to directly interact with the
hardware. This has to be done because either there are no
DOS/BIOS functions to do this, or if they are there their reach is
limited.

Figure 16.2 captures the essence of the DOS programming model.

Chapter 16: C Under Windows 545

Sequentially Executing
DOS program

Interrupt
& CPU

Registers

Interrupt
& CPU

Registers

main()
{
 fun() ;
}

fun()
{
 …
 …
}

Hardware

DOS
Functions

BIOS
Function

On execution
transfer control

to program
DOS OS

 Figure 16.2

From the above discussion you can gather that there are several
limitations in the DOS programming model. These have been
listed below:

No True Reuse

The library functions that are called from each program become
part of the executable file (.EXE) for that program. Thus the same
functions get replicated in several EXE files, thereby wasting
precious disk space.

546 Let Us C

Inconsistent Look and Feel

Every DOS program has a different user interface that the user has
to get used to before he can start getting work out of the program.
For example, successful DOS-based software like Lotus 1-2-3,
Foxpro, Wordstar offered different types of menus. This happened
because DOS/BIOS doesn’t provide any functions for creating
user interface elements like menus. As the look and feel of all
DOS based programs is different, the user takes a lot of time in
learning how to interact with the program

Messy Calling Mechanism

It is difficult to remember interrupt numbers and the registers that
are to be used for communication with DOS/BIOS functions. For
example, if we are to position the cursor on the screen using a
BIOS function we are required to remember the following details:

Interrupt number – 16
CPU Registers to be used:
 AH – 2 (service number)
 DH – Row number where cursor is to be positioned
 DL – Column number where cursor is to be positioned

While using these interrupt numbers and registers there is always a
chance of error.

Hardware Dependency

DOS programs are always required to bother about the details of
the hardware on which they are running. This is because for every
new piece of hardware introduced there are new interrupt numbers
and new register details. Hence DOS programmers are under the
constant fear that if the hardware on which the programs are
running changes then the program may crash.

Chapter 16: C Under Windows 547

Moreover the DOS programmer has to write lot of code to detect
the hardware on which his program is running and suitably make
use of the relevant interrupts and registers. Not only does this
make the program lengthy, the programmer has to understand a lot
of technical details of the hardware. As a result the programmer
has to spend more time in understanding the hardware than in the
actual application programming.

Windows Programming Model
From the perspective of the user the shift from MS-DOS to
Windows OS involves switching over to a Graphical User
Interface from the typical Text Interface that MS-DOS offers.
Another change that the user may feel and appreciate is the ability
of Windows OS to execute several programs simultaneously,
switching effortlessly from one to another by pointing at windows
and clicking them with the mouse. Mastering this new GUI
environment and getting comfortable with the multitasking feature
is at the most a matter of a week or so. However, from the
programmer’s point of view programming for Windows is a whole
new ball game!

Windows programming model is designed with a view to:

(a)
(b)
(c)
(d)

Eliminate the messy calling mechanism of DOS
Permit true reuse of commonly used functions
Provide consistent look and feel for all applications
Eliminate hardware dependency

Let us discuss how Windows programming model achieves this.

Better Calling Mechanism

Instead of calling functions using Interrupt numbers and registers
Windows provides functions within itself which can be called
using names. These functions are called API (Application
Programming Interface) functions. There are literally hundreds of

548 Let Us C

API functions available. They help an application to perform
various tasks such as creating a window, drawing a line,
performing file input/output, etc.

True Reuse

A C under Windows program calls several API functions during
course of its execution. Imagine how much disk space would have
been wasted had each of these functions become part of the EXE
file of each program. To avoid this, the API functions are stored in
special files that have an extension .DLL.

DLL stands for Dynamic Link Libraries. A DLL is a binary file
that provides a library of functions. The functions present in DLLs
can be linked during execution. These functions can also be shared
between several applications running in Windows. Since linking is
done dynamically the functions do not become part of the
executable file. As a result, the size of EXE files does not go out of
hand. It is also possible to create your own DLLs. You would like
to do this for two reasons:

(a)

(b)

Sharing common code between different executable files.

Breaking an application into component parts to provide a
way to easily upgrade application’s components.

The Windows API functions come in three DLL files. Figure 16.3
lists these filenames along with purpose of each.

Chapter 16: C Under Windows 549

 DLL Description

 USER32.DLL Contains functions that are responsible
for window management, including
menus, cursors, communications,
timer etc.

 GDI32.DLL Contains functions for graphics drawing
and painting

 KERNEL32.DLL Contains functions to handle memory
management, threading, etc.

 Figure 16.3

Consistent Look and Feel

Consistent look and feel means that each program offers a
consistent and similar user interface. As a result, user doesn’t have
to spend long periods of time mastering a new program. Every
program occupies a window—a rectangular area on the screen. A
window is identified by a title bar. Most program functions are
initiated through the program’s menu. The display of information
too large to fit on a single screen can be viewed using scroll bars.
Some menu items invoke dialog boxes, into which the user enters
additional information. One dialog box is found in almost every
Windows program. It opens a file. This dialog box looks the same
(or very similar) in many different Windows programs, and it is
almost always invoked from the same menu option.

Once you know how to use one Windows program, you’re in a
good position to easily learn another. The menus and dialog boxes
allow user to experiment with a new program and explore its
features. Most Windows programs have both a keyboard interface
and a mouse interface. Although most functions of Windows
programs can be controlled through the keyboard, using the mouse
is often easier for many chores.

550 Let Us C

From the programmer’s perspective, the consistent user interface
results from using the Windows API functions for constructing
menus and dialog boxes. All menus have the same keyboard and
mouse interfaces because Windows—rather than the application
program—handles this job.

Hardware Independent Programming

As we saw earlier a Windows program can always call Windows
API functions. Thus an application can easily communicate with
OS. What is new in Windows is that the OS can also communicate
with application. Let us understand why it does so with the help of
an example.

Suppose we have written a program that contains a menu item,
which on selection is supposed to display a string “Hello World”
in the window. The menu item can be selected either using the
keyboard or using the mouse. On executing this program it will
perform the initializations and then wait for the user input. Sooner
or later the user would press the key or click the mouse to select
the menu-item. This key-press or mouse-click is known as an
‘event’. The occurrence of this event is sensed by the keyboard or
mouse device driver. The device driver would now inform
Windows about it. Windows would in turn notify the application
about the occurrence of this event. This notification is known as a
‘message’. Thus the OS has communicated with the application.
When the application receives the message it communicates back
with the OS by calling a Windows API function to display the
string “Hello World” in the window. This API function in turn
communicates with the device driver of the graphics card (that
drives the screen) to display the string. Thus there is a two-way
communication between the OS and the application. This is shown
in Figure 16.4.

Chapter 16: C Under Windows 551

 Hardware

API Call Message

 Device Driver

 Windows OS

 Application

 Figure 16.4

Suppose the keyboard and the mouse are now replaced with a new
keyboard and mouse. Doing so would not affect the application at
all. This is because at no time does the application carry out any
direct communication with the devices. Any differences that may
be there in the new set of mouse and keyboard would be handled
the device driver and not by the application program. Similarly, if
the screen or the graphics card is replaced no change would be
required in the program. In short hardware independence at work!
At times a change of device may necessitate a change in the device
driver program, but never a change in the application.

Event Driven Model

When a user interacts with a Windows program a lot of events
occur. For each event a message is sent to the program and the
program reacts to it. Since the order in which the user would
interact with the user-interface elements of the program cannot be
predicted the order of occurrence of events, and hence the order of
messages, also becomes unpredictable. As a result, the order of

552 Let Us C

calling the functions in the program (that react to different
messages) is dictated by the order of occurrence of events. Hence
this programming model is called ‘Event Driven Programming
Model’.

That’s really all that is there to event-driven programming. Your
job is to anticipate what users are likely to do with your
application’s user interface objects and have a function waiting,
ready to execute at the appropriate time. Just when that time is, no
one except the user can really say.

Windows Programming, a Closer Look
There can be hundreds of ways in which the user may interact with
an application. In addition to this some events may occur without
any user interaction. For example, events occur when we create a
window, when the window’s contents are to be drawn, etc. Not
only this, occurrence of one event may trigger a few more events.
Thus literally hundreds of messages may be sent to an application
thereby creating a chaos. Naturally, a question comes—in which
order would these messages get processed by the application.
Order is brought to this chaos by putting all the messages that
reach the application into a ‘Queue’. The messages in the queue
are processed in First In First Out (FIFO) order.

In fact the OS maintains several such queues. There is one queue,
which is common for all applications. This queue is known as
‘System Message Queue’. In addition there is one queue per
application. Such queues are called ‘Application Message
Queues’. Let us understand the need for maintaining so many
queues.

When we click a mouse and an event occurs the device driver
posts a message into the System Message Queue. The OS retrieves
this message finds out with regard to which application the
message has been sent. Next it posts a message into the

Chapter 16: C Under Windows 553

Application Message Queue of the application in which the mouse
was clicked. Refer Figure 16.5.

Application2 Application2
Msg. Queue

Application1
Msg. Queue

Application1

Event Event

Device Driver Device Driver

 OS Other
Mess

Other
Messa

System Msg.
Queue

Msg. Msg.

Figure 16.5

I think now we have covered enough ground to be able to actually
start C under Windows programming. Here we go…

554 Let Us C

The First Windows Program
To keep things simple we would begin with a program that merely
displays a “Hello” message in a message box. Here is the
program…

#include <windows.h>
int _stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdline, int nCmdShow)
{
 MessageBox (0, “Hello!”, “Title”, 0) ;
 return (0) ;
}

Naturally a question would come to your mind—how do I create
and run this program and what output does it produce. Firstly take
a look at the output that it produces. Here it is…

Figure 16.6

Let us now look at the steps that one needs to carry to create and
execute this program:

(a)

(b)

(c)

(d)

Start VC++ from ‘Start | Programs | Microsoft Visual C++
6.0’. The VC++ IDE window will get displayed.
From the File | New menu, select ‘Win32 Application’, and
give a project name, say, ‘sample1’. Click on OK.
From the File | New menu, select ‘C++ Source File’, and give
a suitable file name, say, ‘sample1’. Click on OK.
The ‘Win32 Application-Step 1 of 1’ window will appear.
Select ‘An empty project’ option and click ‘Finish’ button.

Chapter 16: C Under Windows 555

(e)

(f)

(g)

(h)

(a)
(b)

(a)

(b)

A ‘New Project Information’ dialog will appear. Close it by
clicking on OK.
Again select ‘File | New | C++ Source File’. Give the file
name as ‘sample1.c’. Click on OK.
Type the program in the ‘sample1.c’ file that gets opened in
the VC++ IDE.
Save this file using ‘Save’ option from the File menu.

To execute the program follow the steps mentioned below:

From the Build menu, select ‘Build sample1.exe’.
Assuming that no errors were reported in the program, select
‘Execute sample1.exe’ from the Build menu.

Let us now try to understand the program. The way every C under
DOS program begins its execution with main(), every C under
Windows program begins its execution with WinMain(). Thus
WinMain() becomes the entry point for a Windows program. A
typical WinMain() looks like this:

int __stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)

Note the __stdcall before WinMain(). It indicates the calling
convention used by the WinMain() function. Calling Conventions
indicate two things:

The order (left to right or right to left) in which the arguments
are pushed onto the stack when a function call is made.

Whether the caller function or called function removes the
arguments from the stack at the end of the call.

Out of the different calling conventions available most commonly
used conventions are __cdecl and __stdcall . Both these calling
conventions pass arguments to functions from right to left. In
__cdecl the stack is cleaned up by the calling function, whereas in
case of __stdcall the stack is cleaned up by the called function. All

556 Let Us C

API functions use __stdcall calling convention. If not mentioned,
__cdecl calling convention is assumed by the compiler.

HINSTANCE and LPSTR are nothing but typedefs. The first is an
unsigned int and the second is a pointer to a char. These macros
are defined in ‘windows.h’. This header file must always be
included while writing a C program under Windows. hInstance,
hPrevInstance, lpszCmdLine and nCmdShow are simple
variable names. In place of these we can use i, j, k and l
respectively. Let us now understand the meaning of these
parameters as well as the rest of the program.

− WinMain() receives four parameters which are as under:

hInstance: This is the ‘instance handle’ for the running
application. Windows creates this ID number when the
application starts. We will use this value in many Windows
functions to identify an application’s data.

A handle is simply a 32-bit number that refers to an entity.
The entity could be an application, a window, an icon, a
brush, a cursor, a bitmap, a file, a device or any such entity.
The actual value of the handle is unimportant to your
programs, but the Windows module that gives your program
the handle knows how to use it to refer to an entity. What is
important is that there is a unique handle for each entity and
we can refer and reach the entity only using its handle.

hPrevInstance: This parameter is a remnant of earlier
versions of Windows and is no longer significant. Now it
always contains a value 0. It is being persisted with only to
ensure backward compatibility.

lpszCmdLine: This is a pointer to a character string
containing the command line arguments passed to the
program. This is similar to the argv, argc parameters passed
to main() in a DOS program.

Chapter 16: C Under Windows 557

nCmdShow: This is an integer value that is passed to the
function. This integer tells the program whether the window
that it creates should appear minimized, as an icon, normal, or
maximized when it is displayed for the first time.

− The MessageBox() function pops up a message box whose
title is ‘Title’ and which contains a message ‘Hello!’.

− Returning 0 from WinMain() indicates success, whereas,
returning a nonzero value indicates failure.

− Instead of printing ‘Hello!’ in the message box we can print
the command line arguments that the user may supply while
executing the program. The command line arguments can be
supplied to the program by executing it from Start | Run as
shown in Figure 16.7.

 Figure 16.7

Note from Figure 16.7 that ‘myapp.exe’ is the name of our
application, whereas, ‘abc ijk xyz’ represents command line
arguments. The parameter lpszCmdline points to the string
“abc ijk xyz”. This string can be printed using the following
statement:

MessageBox (0, lpszCmdline, "Title", 0) ;

If the entire command line including the filename is to be
retrieved we can use the GetCommandLine() function.

558 Let Us C

Hungarian Notation
Hungarian Notation is a variable-naming convention so called in
the honor of the legendary Microsoft programmer Charles
Simonyi. According to this convention the variable name begins
with a lower case letter or letters that denotes the data type of the
variable. For example, the sz prefix in szCmdLine stands for
‘string terminated by zero’; the prefix h in hInstance stands for
‘handle’; the prefix n in nCmdShow stands for int. Prefixes are
often combined to form other prefixes, as lpsz in lpszCmdLine
stands for ‘long pointer to a zero terminated string’. Though
basically this notation is a good idea nowadays its usage is
discouraged. This is because when a transition happens from say a
16-bit code to 32-bit code then a whole lot of variable names have
to be changed. For example, suppose the 16-bit code used 2-byte
and 4-byte integer variables called wParam and lParam, where w
indicated a 16-bit integer (word) and a 32-bit integer (long)
respectively. When this code is ported to a 32-bit environment
wParam had to be changed to lParam since in this environment
every integer is 4 bytes long. You would agree that if we follow
the Hungarian notation then we would have to make a whole lot of
changes in the variable names when we port the code to a 32-bit or
a 64-bit environment. Hence the usage of this convention is
nowadays discouraged.

Summary
(a)

(b)
(c)
(d)

(e)

Under Windows an integer is four bytes long. To use a two-
byte integer pre-qualify it with short.
Under Windows a pointer is four bytes long.
Windows programming involves a heavy usage of typedefs.
DOS uses a Sequential Programming Model, whereas,
Windows uses an Event Driven Programming Model.
Entry point of every Windows program is a function called
WinMain().

Chapter 16: C Under Windows 559

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(a)
(b)

(c)
(d)
(e)
(f)

(g)

(h)

Windows does not permit direct access to memory or
hardware devices.
Windows uses a Demand-based Virtual Memory Model to
manage memory.
Under Windows there is two-way communication between the
program and the OS.
Windows maintains a system message queue common for all
applications.
Windows maintains an application message queue per running
application.
Calling convention decides the order in which the parameters
are passed to a function and whether the calling function or
the called function clears the stack.
Commonly used calling conventions are __cdecl and
__stdcall.
Hungarian notation though good its usage is not
recommended any more.

Exercise

[A] State True or False:

MS-DOS uses a procedural programming model.
A Windows program can directly call a device driver program
for a device.
API functions under Windows do not have names.
DOS functions are called using an interrupt mechanism.
Windows uses a 4 GB virtual memory space.
Size of a pointer under Windows depends upon whether it is
near or far.
Under Windows the address stored in a pointer is a virtual
address and not a physical address.
One of the parameters of WinMain() called hPrevInstance
is no longer relevant.

560 Let Us C

[B] Answer the following:

(a)

(b)

(c)
(d)
(e)

(f)

(a)

(b)

(c)

(d)

Why is Event-driven Programming Model better than the
Sequential Programming Model?
What is the meaning of different parts of the address stored in
a pointer under Windows environment?
Why Windows does not permit direct access to hardware?
What is the difference between an event and a message?
Why Windows maintains a different message queue for each
application?
In which different situations messages get posted into an
application message queue?

[C] Attempt the following:

Write a program that prints the value of hInstance in a
message box.
Write a program that displays three buttons ‘Yes’, ‘No’
‘Cancel’ in the message box.
Write a program that receives a number as a command line
argument and prints its factorial value in a message box.
Write a program that displays command line arguments
including file name in a message box.

17 Windows
 Programming

• The Role of a Message Box
• Here comes the window…
• More Windows
• A Real-World Window

Creation and Displaying of Window
Interaction with Window
Reacting to Messages

• Program Instances
• Summary
• Exercise

561

562 Let Us C

event driven programming requires a change in mind set. I
hope Chapter 16 has been able to bring about this change.
However this change would be bolstered by writing event

driven programs. This is what this chapter intends to do. I am
hopeful that by the time you reach the end of this chapter you
would be so comfortable with it as if you have been using it all
your life.

E
The Role of a Message Box

Often we are required to display certain results on the screen
during the course of execution of a program. We do this to
ascertain whether we are getting the results as per our
expectations. In a sequential DOS based program we can easily
achieve this using printf() statements. Under Windows screen is a
shared resource. So you can imagine what chaos would it create if
all running applications are permitted to write to the screen. You
would not be able to make out which output is of what application.
Hence no Windows program is permitted to write anything directly
to the screen. That’s where a message box enters the scene. Using
it we can display intermediate results during the course of
execution of a program. It can be dismissed either by clicking the
‘close button’ in its title bar or by clicking the OK button present
in it. There are numerous variations that you can try with the
MessageBox(). Some of these are given below

MessageBox (0, “Are you sure”, “Caption”, MB_YESNO) ;
MessageBox (0, “Print to the Printer”, “Caption”, MB_YESNO CANCEL) ;
MessageBox (0, “icon is all about style”, “Caption”, MB_OK |
 MB_ICONINFORMATION) ;

You can put the above statements within WinMain() and see the
results for yourself. Though the above message boxes give you
flexibility in displaying results, button, icons, there is a limit to
which you can stretch them. What if we want to draw a free hand
drawing or display an image, etc. in the message box. This would

Chapter 17: Windows Programming 563

not be possible. To achieve this we need to create a full-fledged
window. The next section discusses how this can be done.

Here Comes the window…
Before we proceed with the actual creation of a window it would
be a good idea to identify the various elements of it. These are
shown in Figure 17.1.

Caption
Bar

Icon

Menu

Client
Area

Horizontal Scroll

Vertical

Scrol

Minimize
Box

Close
Butt
on

Figure 17.1

Note that every window drawn on the screen need not necessarily
have every element shown in the above figure. For example, a
window may not contain the minimize box, the maximize box, the
scroll bars and the menu.

Let us now create a simple program that creates a window on the
screen. Here is the program…

#include <windows.h>

564 Let Us C

int _stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
 HWND h ;

 h = CreateWindow (“BUTTON”, “Hit Me”, WS_OVERLAPPEDWINDOW,
 10, 10, 150, 100, 0, 0, i, 0) ;
 ShowWindow (h, nCmdShow) ;
 MessageBox (0, “Hi!”, “Waiting”, MB_OK) ;
 return 0 ;
}

Here is the output of the program…

Figure 17.2

Let us now understand the program. Every window enjoys certain
properties—background color, shape of cursor, shape of icon, etc.
All these properties taken together are known as ‘window class’.
The meaning of ‘class’ here is ‘type’. Windows insists that a
window class should be registered with it before we attempt to
create windows of that type. Once a window class is registered we
can create several windows of that type. Each of these windows
would enjoy the same properties that have been registered through
the window class. There are several predefined window classes.
Some of these are BUTTON, EDIT, LISTBOX, etc. Our program
has created one such window using the predefined BUTTON class.

Chapter 17: Windows Programming 565

To actually create a window we need to call the API function
CreateWindow(). This function requires several parameters
starting with the window class. The second parameter indicates the
text that is going to appear on the button surface. The third
parameter specifies the window style.
WS_OVERLAPPEDWINDOW is a commonly used style. The
next four parameters specify the window’s initial position and
size—the x and y screen coordinates of the window’s top left
corner and the window’s width and height in pixels. The next three
parameters specify the handles to the parent window, the menu and
the application instance respectively. The last parameter is the
pointer to the window-creation data.

We can easily devote a section of this book to CreateWindow()
and its parameters. But don’t get scared of it. Nobody is supposed
to remember all the parameters, their meaning and their order. You
can always use MSDN (Microsoft Developer Network) help to
understand the minute details of each parameter. This help is
available as part of VC++ 6.0 product. It is also available on the
net at http://www.msdn.microsoft.com/library.

Note that CreateWindow() merely creates the window in
memory. We still are to display it on the screen. This can be done
using the ShowWindow() API function. CreateWindow()
returns handle of the created window. Our program uses this
handle to refer to the window while calling ShowWindow(). The
second parameter passed to ShowWindow() signifies whether the
window would appear minimized, maximized or normal. If the
value of this parameter is SW_SHOWNORMAL we get a normal
sized window, if it is SW_SHOWMINIMIZED we get a
minimized window and if it is SW_SHOWMINIMIZED we get a
maximized window. We have passed nCmdShow as the second
parameter. This variable contains SW_SHOWNORMAL by
default. Hence our program displays a normal sized window.

566 Let Us C

The WS_OVERLAPPEDWINDOW style is a collection of the
following styles:

WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_THICKFRAME |
WS_MINIMIZEBOX | WS_MAXIMIZEBOX

As you can make out from these macros they essentially control
the look and feel of the window being created. All these macros
are #defined in the ‘Windows.h’ header file.

On executing this program a window and a message box appears
on the screen as shown in the Figure 17.2. The window and the
message box disappear as soon as we click on OK. This is because
on doing so execution of WinMain() comes to an end and
moreover we have made no provision to interact with the window.

You can try to remove the call to MessageBox() and see the
result. You would observe that no sooner does the window appear
it disappears. Thus a call to MessageBox() serves the similar
purpose as getch() does in sequential programming.

More Windows
Now that we know how to create a window let us create several
windows on the screen. The program to do this is given below.

#include <windows.h>

int _stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
 HWND h[10] ;
 int x ;

 for (x = 0 ; x <= 9 ; x++)
 {

Chapter 17: Windows Programming 567

 h[x] = CreateWindow ("BUTTON", "Press Me",
 WS_OVERLAPPEDWINDOW, x * 20,
 x * 20, 150, 100, 0, 0, i, 0) ;
 ShowWindow (h[x], l) ;
 }

 MessageBox (0, "Hi!", "Waiting", 0) ;
 return 0 ;
}

Figure 17.3

Note that each window created in this program is assigned a
different handle. You may experiment a bit by changing the name
of the window class to EDIT and see the result.

A Real-World Window
Suppose we wish to create a window and draw a few shapes in it.
For creating such a window there is no standard window class
available. Hence we would have to create our own window class,
register it with Windows OS and then create a window on the basis
of it. Instead of straightway jumping to a program that draws

568 Let Us C

shapes in a window let us first write a program that creates a
window using our window class and lets us interact with it. Here is
the program…

#include <windows.h>
#include "helper.h"

void OnDestroy (HWND) ;

int __stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdline, int nCmdShow)
{
 MSG m ;

 /* perform application initialization */
 InitInstance (hInstance, nCmdShow, "title") ;

 /* message loop */
 while (GetMessage (&m, 0, 0, 0))
 DispatchMessage (&m) ;

 return 0 ;
}

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_DESTROY :
 OnDestroy (hWnd) ;
 break ;
 default :
 return DefWindowProc (hWnd, message, wParam, lParam) ;
 }
 return 0 ;
}

Chapter 17: Windows Programming 569

void OnDestroy (HWND hWnd)
{
 PostQuitMessage (0) ;
}

On execution of this program the window shown in Figure 17.4
appears on the screen. We can use minimize and the maximize
button it its title bar to minimize and maximize the window. We
can stretch its size by dragging its boundaries. Finally, we can
close the window by clicking on the close window button in the
title bar.

Figure 17.4

Let us now try to understand this program step by step.

Creation and Displaying of Window

Creating and displaying a window on the screen is a 4-step
process. These steps are:

(a)
(b)
(c)
(d)

Creation of a window class.
Registering the window class with the OS.
Creation of a window based on the registered class.
Displaying the window on the screen.

Creation of a window class involves setting up of elements of a
structure called WNDCLASSEX. This structure contains several

570 Let Us C

elements. They govern the properties of the window. Registration
of a window class, creation of a window and displaying of a
window involves calling of API functions RegisterClassEx(),
CreateWindow() and ShowWindow() respectively. Since all the
4 steps mentioned above would be required in almost every
program in this chapter I have written this code in a user-defined
function called InitInstance() in the file ‘helper.h’.

Though writing code in a header file goes against the convention I
have still done so to achieve simplicity. The complete listing of
‘helper.h’ file is available in Appendix F. Alternatively you can
download it from the following link:

www.kicit.com/books/letusc/sourcecode/helper.h

As expected WinMain() starts off by calling the function
InitInstance() present in ‘helper.h’ file. This file has been
#included at the beginning of the program. Remember to copy this
file to your project directory—the directory in which you are going
to create this program.

Once the window has been created and displayed let us see how
we can interact with it.

Interaction with Window

As and when the user interacts with the window—by stretching its
boundaries or clicking the buttons in the title bar, etc. a suitable
message is posted into the message queue of our application. Our
application should now pick them up from the message queue and
process them.

A message contains a message id and some other additional
information about the message. For example, a mouse click
message would contain additional information like handle to the
window with which the user has interacted, the coordinates of

Chapter 17: Windows Programming 571

mouse cursor and the status of mouse buttons. Since it is difficult
to memorize the message ids they have been suitably #defined in
‘windows.h’. The message id and the additional information are
stored in a structure called MSG.

In WinMain() this MSG structure is retrieved from the message
queue by calling the API function GetMessage(). The first
parameter passed to this function is the address of the MSG
structure variable. GetMessage() would pick the message info
from the message queue and place it in the structure variable
passed to it. Don’t bother about the other parameters right now.

After picking up the message from the message queue we need to
process it. This is done by calling the DispatchMessage() API
function. This function does several activities. These are as
follows:

(a)

(b)

(c)

(d)

From the MSG structure that we pass to it,
DisplayMessage() extracts the handle of the window for
which this message is meant for.
From the handle it figures out the window class based on
which the window has been created.
From the window class structure it obtains the address of a
function called WndProc() (short for window procedure).
Well I didn’t tell you earlier that in InitInstance() while
filling the WNDCLASSEX structure one of the elements has
been set up with the address of a user-defined function called
WndProc().
Using this address it calls the function WndProc().

Since several messages get posted into the message queue picking
of the message and processing it should be done repeatedly. Hence
calls to GetMesage() and DispatchMessage() have been made in
a while loop in WinMain(). When GetMessage() encounters a
message with id WM_QUIT it returns a 0. Now the control comes
out of the loop and WinMain() comes to an end.

572 Let Us C

Reacting to Messages

As we saw in the previous section, for every message picked up
from the message queue the control is transferred to the
WndProc() function. This function is shown below:

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)

This function always receives four parameters. The first parameter
is the handle to the window for which the message has been
received. The second parameter is the message id, whereas, the
third and fourth parameters contain additional information about
the message.

LRESULT is a typedef of a long int and represents the return
value of this function. CALLBACK is a typedef of __stdcall.
This typedef has been done in ‘windows.h’. CALLBACK
indicates that the WndProc function has been registered with
Windows (through WNDCLASSEX structure in InitInstance())
with an intention that Windows would call this back (through
DispatchMessage() function).

In the WndProc() function we have checked the message id using
a switch. If the id is WM_DESTROY then we have called the
function OnDestroy(). This message is posted to the message
queue when the user clicks on the ‘Close Window’ button in the
title bar. In OnDestroy() function we have called the API
function PostQuitMessage(). This function posts a WM_QUIT
message into the message queue. As we saw earlier, when this
message is picked up the message loop and WinMain() is
terminated.

For all messages other than WM_DESTROY the control lands in
the default clause of switch. Here we have simply made a call to
DefWindowProc() API function. This function does the default

Chapter 17: Windows Programming 573

processing of the message that we have decided not to tackle. The
default processing for different message would be different. For
example on double clicking the title bar DefWindowProc()
maximizes the window.

Actually speaking when we close the window a WM_CLOSE
message is posted into the message queue. Since we have not
handled this message the DefWindowProc() function gets called
to tackle this message. The DefWindowProc() function destroys
the window and places a WM_DESTROY message in the
message queue. As discussed earlier, in WndProc() we have
made the provision to terminate the application on encountering
WM_DESTROY.

That brings us to the end of a lonnngggg explanation! You can
now heave a sigh of relief. I would urge you to go through the
above explanation till the time you are absolutely sure that you
have understood every detail of it. A very clear understanding of it
would help you make a good Windows programmer. For your
convenience I have given a flowchart of the entire working in
Figure 17.5.

574 Let Us C

Fill WNDCLASSEX structure to define window class

Pick message from message queue – GetMessage()

Is
the message
WM_QUIT

No

Process the message – DispatchMessage()

Call Window Procedure

Is the message
WM_DESTROY

Yes

No
Do default processing of

message – DefWindowProc()

Post WM_QUIT –
PostQuitMessage()

STOPYes

Call ShowWindow() to display window on screen

Call CreateWindow() to create window in memory

Call RegisterCallEx() to register the window class with OS

Call InitInstance()

START Execution

Figure 17.5

Chapter 17: Windows Programming 575

Program Instances
Windows allows you to run more than one copy of a program at a
time. This is handy for cutting and pasting between two copies of
Notepad or when running more than one terminal session with a
terminal emulator program. Each running copy of a program is
called a ‘program instance’.

Windows performs an interesting memory optimization trick. It
shares a single copy of the program’s code between all running
instances. For example, if you get three instances of Notepad
running, there will only be one copy of Notepad’s code in
memory. All three instances share the same code, but will have
separate memory areas to hold the text data being edited. The
difference between handling of the code and the data is logical, as
each instance of Notepad might edit a different file, so the data
must be unique to each instance. The program logic to edit the files
is the same for every instance, so there is no reason why a single
copy of Notepad’s code cannot be shared.

Summary
(a)

(b)

(c)
(d)

(e)

(f)

(g)

A message box can be displayed by calling the
MessageBox() API function.
Message boxes are often used to ascertain the flow of a
program.
Appearance of a message box can be customized.
The CreateWindow() API function creates the window in
memory.
The window that is created in memory is displayed using the
ShowWindow() API function.
A ‘window class’ specifies various properties of the window
that we are creating.
The header file ‘Windows.h’ contains declaration of several
macros used in Windows programming.

576 Let Us C

(h)

(i)

(j)

(k)

When the user clicks in a window, or moves mouse pointer on
the window, messages are generated and posted in the
application message queue.
A message contains the message id and additional information
about the message.
The GetMessage()-DispatchMessage() loop breaks when
GetMessage() encounters the WM_QUIT message.
If we don’t handle a message received by our application then
the DefWindowProc() function is called to do the default
processing.

Exercise

[A] State True or False:

(a) MessageBox() is an API function.
(b) Calling the MessageBox() function displays the specified

string in console window.
(c) The CreateWindow() function creates and displays the

window on the screen.
(d) The ShowWindow() function can display only the

maximized window.
(e) Every window has to be created using pre-registered window

class.
(f) Window classes are similar to classes in C++.
(g) We can use the pre-defined window classes but cannot create

our own.
(h) The style WS_OVERLAPPED | WS_CAPTION |

WS_MINIMIZEBOX will create a window with caption bar
and minimize box only.

(i) To be able to interact with a window it is necessary to
implement the message loop.

[B] Answer the following:

(a) Outline the steps that a typical Windows program follows
during execution.

Chapter 17: Windows Programming 577

(b) Run any Windows based program and see whether you can
identify all the elements of the application window.

(c) How would you minimize a window programmatically?

(d) What would happen if we do not place WM_QUIT message
in the message queue when the user tries to close the window.

(e) Explain the need of RegisterClassEx() function.

(f) What is the difference between GetMessage() and
DispatchMessage() function?

(g) Write a program, which receives an integer as a command line
argument, creates a button window, and based on the value of
the integer displays button window as maximized / minimized
/ normal.

(h) Try to display a window with different combinations of
window styles and observer the results.

578 Let Us C

18 Graphics Under
 Windows

• Graphics as of Now
• Device Independent Drawing
• Hello Windows
• Drawing Shapes
• Types of Pens
• Types of Brushes

Code and Resources
• Freehand Drawing, the Paintbrush Style
• Capturing the mouse
• Device Context, A Closer Look
• Displaying a Bitmap
• Animation at Work

WM_CREATE and OnCreate()
WM_TIMER and OnTimer()
A Few More Points…

• Windows, the Endless World…
• Summary
• Exercise

579

580 Let Us C

ince times immemorial colors and shapes have fascinated
mankind like nothing else. Otherwise people would have
still been using the character oriented interfaces of MS-DOS

or Unix. In fact the graphical ability of Windows has played a very
important role in its success story. Once you get a hang of how to
draw inside a window it would open up immense possibilities that
you never thought were possible.

S

Graphics as of Now
World has progressed much beyond 16 colors and 640 x 480
resolution graphics that Turbo C/C++ compilers offered under
MS-DOS environment. Today we are living in a world of 1024 x
768 resolution offering 16.7 million colors. Graphical menus,
icons, colored cursors, bitmaps, wave files and animations are the
order of the day. So much so that a 16-color graphics program
built using Turbo C working on a poor resolution almost hurts the
eye. Moreover, with the whole lot of Windows API functions to
support graphics activity there is so much that can be achieved in a
graphics program under Windows. I am sure that this chapter will
help you understand and appreciate these new capabilities.

Device Independent Drawing
Windows allow programmers to write programs to display text or
graphics on the screen without concern over the specifics of the
video hardware. A Windows program that works on a VGA
display will work without modification on an SVGA or on a XGA
display that Windows supports.

The key to this ‘device independence’ is Windows’ use of a
‘device context’. We will explore how the device context can be
used for both text and graphics output, and how using the device
context keeps our programs from interfering with each other on the
screen.

Chapter 18: Graphics Under Windows 581

During the original design of Windows, one of the goals was to
provide ‘device independence’. Device independence means that
the same program should be able to work using different screens,
keyboards and printers without modification to the program.
Windows takes care of the hardware, allowing the programmer to
concentrate on the program itself. If you have ever had to update
the code of an MS-DOS program for the latest printer, plotter,
video display, or keyboard, you will recognize device
independence as a huge advantage for the developer.

Windows programs do not send data directly to the screen or
printer. A Windows program knows where (screen/printer) its
output is being sent. However, it does not know how it would be
sent there, neither does it need to bother to know this. This is
because Windows uses a standard and consistent way to send the
output to screen/printer. This standard way uses an entity called
Device Context, or simply a DC. Different DC’s are associated
with different devices. For example, a screen DC is associated
with a screen, a printer DC is associated with a printer, etc. Any
drawing that we do using the screen DC is directed to the screen.
Similarly, any drawing done using the printer DC is directed to the
printer. Thus, the only thing that changes from drawing to screen
and drawing to printer is the DC that is used.

A windows program obtains a handle (ID value) for the screen or
printer’s DC. The output data is sent to the screen/printer using its
DC, and then Windows and the Device Driver for the device takes
care of sending it to the real hardware. The advantage of using the
DC is that the graphics and text commands that we send using the
DC are always the same, regardless of where the physical output is
showing up.

The part of Windows that converts the Windows graphics function
calls to the actual commands sent to the hardware is the GDI, or
Graphics Device Interface. The GDI is a program file called
GDI32.DLL and is stored in the Windows System directory. The

582 Let Us C

Windows environment loads GDI32.DLL into memory when it is
needed for graphical output. Windows also loads a ‘device driver’
program if the hardware conversions are not part of GDI32.DLL.
Common examples are VGA.SYS for VGA video screen and
HPPLC.SYS for the HP LaserJet printer. Drivers are just programs
that assist the GDI in converting Windows graphics commands to
hardware commands.

Thus GDI provides all the basic drawing functionality for
Windows; the device context represents the device providing a
layer of abstraction that insulates your applications from the
trouble of drawing directly to the hardware. The GDI provides this
insulation by calling the appropriate device driver in response to
windows graphics function calls.

Hello Windows
We would begin our tryst with graphics programming under
windows by displaying a message “Hello Windows” in different
fonts. Note that though we are displaying text under Windows
even text gets drawn graphically in the window. First take a look at
the program given below before we set out to understand it.

include <windows.h>
include "helper.h"

void OnPaint (HWND) ;
void OnDestroy (HWND) ;

int __stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR lpszCmdline, int nCmdShow)
{
 MSG m ;

 /* Perform application initialization */
 InitInstance (hInstance, nCmdShow, "Text") ;

Chapter 18: Graphics Under Windows 583

 /* Main message loop */
 while (GetMessage (&m, NULL, 0, 0))
 DispatchMessage(&m);

 return 0 ;
}

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_DESTROY :
 OnDestroy (hWnd) ;
 break ;
 case WM_PAINT :
 OnPaint (hWnd) ;
 break ;
 default :
 return DefWindowProc (hWnd, message, wParam, lParam) ;
 }
 return 0 ;
}

void OnDestroy (HWND hWnd)
{
 PostQuitMessage (0) ;
}

void OnPaint (HWND hWnd)
{
 HDC hdc ;
 PAINTSTRUCT ps ;
 HFONT hfont ;
 LOGFONT f = { 0 } ;
 HGDIOBJ holdfont ;
 char *fonts[] = { "Arial", "Times New Roman", "Comic Sans MS" } ;
 int i ;

584 Let Us C

 hdc = BeginPaint (hWnd, &ps) ;

 for (i = 0 ; i < 3 ; i++)
 {
 strcpy (f.lfFaceName, fonts[i]) ; /* copy font name */
 f.lfHeight = 40 * (i + 1) ; /* font height */
 f.lfItalic = 1 ; /* italic */

 hfont = CreateFontIndirect (&f) ;
 holdfont = SelectObject (hdc, hfont) ;

 SetTextColor (hdc, RGB (0, 0, 255)) ;

 TextOut (hdc, 10, 70 * i, "Hello Windows", 13) ;

 SelectObject (hdc, holdfont) ;
 DeleteObject (hfont) ;
 }

 EndPaint (hWnd, &ps) ;
}

On execution of this program the window shown in Figure 18.1
appears.

Figure 18.1

Chapter 18: Graphics Under Windows 585

Drawing to a window involves handling the WM_PAINT
message. This message is generated whenever the client area of the
window needs to be redrawn. This redrawing would be required in
the following situations:

(a)
(b)
(c)

(d)

(e)

When the Window is displayed for the first time.
When the window is minimized and then maximized.
When some portion of the window is overlapped by another
window and the overlapped window is dismissed.
When the size of the window changes on stretching its
boundaries.
When the window is dragged out of the screen and then
brought back into the screen.

Would a WM_PAINT message be generated when the cursor is
dragged in the window? No. In this case the window saves the area
overlapped by the cursor and restores it when the cursor moves to
another position.

When the switch-case structure inside WndProc() finds that the
message ID passed to WndProc() is WM_PAINT, it calls the
function OnPaint(). Within OnPaint() we have called the API
function BeginPaint(). This function obtains a handle to the
device context. Additionally it also fills the PAINTSTRUCT
structure with information about the area of the window which
needs to be repainted. Lastly it removes WM_PAINT from the
message queue. After obtaining the device context handle, the
control enters a loop.

Inside the loop we have displayed “Hello Windows” in three
different fonts. Each time through the loop we have setup a
LOGFONT structure f. This structure is used to indicate the font
properties like font name, font height, italic or normal, etc. Note
that in addition to these there are other font properties that may be
setup. The properties that we have not setup in the loop are all
initialized to 0. Once the font properties have been setup we have
called the CreateFontIndirect() API function to create the font.

586 Let Us C

This function loads the relevant font file. Then using the
information in the font file and the font properties setup in the
LOGFONT structure it creates a font in memory.
CreateFontIndirect() returns the handle to the font created in
memory. This handle is then passed to the SelectObject() API
function to get the font into the DC. This function returns the
handle to the existing font in the DC, which is preserved in
holdfont variable. Next we have used the SetTextColor() API
function to set the color of the text to be displayed through
TextOut(). The RGB() macro uses the red, green and blue
component values to generate a 32-bit color value. Note that each
color component can take a value from 0 to 255. To TextOut()
we have to pass the handle to the DC, position where the text is to
be displayed, the text to be displayed and its length.

With hfont only one font can be associated at a time. Hence before
associating another font with it we have deleted the existing font
using the DeleteObject() API function. Once outside the loop we
have called the EndPaint() API function to release the DC
handle. If not released we would be wasting precious memory,
because the device context structure would remain in memory but
we would not be able access it.

In place of TextOut() we can also use the DrawText() API
function. This function permits finer control over the way the text
is displayed. You can explore this function on your own.

Drawing Shapes
If text is so near can graphics be far behind? Now that we know
how to draw text in a window let us now create a simple program
that displays different shapes in a window. Instead of showing the
entire program given below is the listing of OnPaint(). The rest of
the program is same as in the previous section. Here onwards I
would be showing only the OnPaint() handler unless otherwise
required.

Chapter 18: Graphics Under Windows 587

void OnPaint (HWND hWnd)
{
 HDC hdc ;
 PAINTSTRUCT ps ;
 HBRUSH hbr ;
 HGDIOBJ holdbr ;
 POINT pt[5] = { 250, 150, 250, 300, 300, 350, 400, 300, 320, 190 } ;

 hdc = BeginPaint (hWnd, &ps) ;

 hbr = CreateSolidBrush (RGB (255, 0, 0)) ;
 holdbr = SelectObject (hdc, hbr) ;

 MoveToEx (hdc, 10, 10, NULL) ;
 LineTo (hdc, 200, 10) ;

 Rectangle (hdc, 10, 20, 200, 100) ;

 RoundRect (hdc, 10, 120, 200, 220, 20, 20) ;

 Ellipse (hdc, 10, 240, 200, 340) ;

 Pie (hdc, 250, 10, 350, 110, 350, 110, 350, 10) ;

 Polygon (hdc, pt, 5) ;

 SelectObject (hdc, holdbr) ;
 DeleteObject (hbr) ;

 EndPaint (hWnd, &ps) ;
}

On execution of this program the window shown in Figure 18.2
appears.

588 Let Us C

Figure 18.2

For drawing any shape we need a pen to draw its boundary and a
brush to paint the area enclosed by it. The DC contains a default
pen and brush. The default pen is a solid pen of black color and the
default brush is white in color. In this program we have used the
default pen and a blue colored solid brush for drawing the shapes.

As before, we begin by obtaining a handle to the DC using
BeginPaint() function. For creating a solid colored brush we need
to call the CreateSolidBrush() API function. The second
parameter of this function specifies the color of the brush. The
function returns the handle of the brush which we have preserved

Chapter 18: Graphics Under Windows 589

in the hbr variable. Next we have selected this brush in the DC.
The handle of the default brush in DC is collected in the holdbr
variable.

Once we have selected the brush into the DC we are ready to draw
the shapes. For drawing the line we have used MoveToEx() and
LineTo() API functions. Similarly for drawing a rectangle we
have used the Rectangle() function.

The RoundRect() function draws a rectangle with rounded
corners. In RoundRect (x1, y1, x2, y2, x3, y3), x1, y1 represents
the x and y-coordinates of the upper-left corner of the rectangle.
Likewise, x2, y2 represent coordinates of the bottom right corner
of the rectangle. x3, y3 specify the width and height of the ellipse
used to draw the rounded corners.

Note that rectangle and the rounded rectangle are drawn from x1,
y1 up to x2-1, y2-1.

Parameters of Ellipse() specify coordinates of bounding rectangle
of the ellipse.

The Pie() function draws a pie-shaped wedge by drawing an
elliptical arc whose center and two endpoints are joined by lines.
The center of the arc is the center of the bounding rectangle
specified by x1, y1 and x2, y2. In Pie(x1, y1, x2, y2, x3, y3, x4,
y4), x1, y1 and x2, y2 specify the x and y-coordinates of the upper
left corner and bottom right corner respectively, of the bounding
rectangle. x3, y3 and x4, y4 specify the x and y-coordinates of the
arc’s starting point and ending point respectively.

In Polygon (lpPoints, nCount), lpPoints points to an array of
points that specifies the vertices of the polygon. Each point in the
array is a POINT structure. nCount specifies the number of
vertices stored in the array. The system closes the polygon
automatically, if necessary, by drawing a line from the last vertex
to the first.

590 Let Us C

Once we are through with drawing the shapes the old brush is
selected back in the DC and then the brush created by us is deleted
using DeleteObject() function.

Types of Pens
In the previous program we have used the default solid black pen
of thickness 1 pixel. We can create pens of different style, color
and thickness to do our drawing. The following OnPaint()
handler shows how this can be achieved.

void OnPaint (HWND hWnd)
{
 HDC hdc ;
 PAINTSTRUCT ps ;
 HPEN hpen ;
 HGDIOBJ holdpen ;

 hdc = BeginPaint (hWnd, &ps) ;

 hpen = CreatePen (PS_DASH, 1, RGB (255, 0, 0)) ;
 holdpen = SelectObject (hdc, hpen) ;

 MoveToEx (hdc, 10, 10, NULL) ;
 LineTo (hdc, 500, 10) ;

 SelectObject (hdc, holdpen) ;
 DeleteObject (hpen) ;

 hpen = CreatePen (PS_DOT, 1, RGB (255, 0, 0)) ;
 holdpen = SelectObject (hdc, hpen) ;

 MoveToEx (hdc, 10, 60, NULL) ;
 LineTo (hdc, 500, 60) ;

 SelectObject (hdc, holdpen) ;
 DeleteObject (hpen) ;

Chapter 18: Graphics Under Windows 591

 hpen = CreatePen (PS_DASHDOT, 1, RGB (255, 0, 0)) ;
 holdpen = SelectObject (hdc, hpen) ;

 MoveToEx (hdc, 10, 110, NULL) ;
 LineTo (hdc, 500, 110) ;

 SelectObject (hdc, holdpen) ;
 DeleteObject (hpen) ;

 hpen = CreatePen (PS_DASHDOTDOT, 1, RGB (255, 0, 0)) ;
 holdpen = SelectObject (hdc, hpen) ;

 MoveToEx (hdc, 10, 160, NULL) ;
 LineTo (hdc, 500, 160) ;

 SelectObject (hdc, holdpen) ;
 DeleteObject (hpen) ;

 hpen = CreatePen (PS_SOLID, 10, RGB (255, 0, 0)) ;
 holdpen = SelectObject (hdc, hpen) ;

 MoveToEx (hdc, 10, 210, NULL) ;
 LineTo (hdc, 500, 210) ;

 SelectObject (hdc, holdpen) ;
 DeleteObject (hpen) ;

 EndPaint (hWnd, &ps) ;
}

On execution of this program the window shown in Figure 18.3
appears.

592 Let Us C

Figure 18.3

A new pen can be created using the CreatePen() API function.
This function needs three parameters—pen style, pen thickness
and pen color. Different macros like PS_SOLID, PS_DOT, etc.
have been defined in ‘windows.h’ to represent different pen styles.
Note that for pen styles other than PS_SOLID the pen thickness
has to be 1 pixel.

Types of Brushes
The way we can create different types of pens, we can also create
three different types of brushes. These are—solid brush, hatch
brush and pattern brush. Let us now write a program that shows
how to build these brushes and then use them to fill rectangles.
Here is the OnPaint() handler which achieves this.

void OnPaint (HWND hWnd)
{
 HDC hdc ;
 PAINTSTRUCT ps ;
 HBRUSH hbr ;

Chapter 18: Graphics Under Windows 593

 HGDIOBJ holdbr ;
 HBITMAP hbmp ;

 hdc = BeginPaint (hWnd, &ps) ;

 hbr = CreateSolidBrush (RGB (255, 0, 0)) ;
 holdbr = SelectObject (hdc, hbr) ;

 Rectangle (hdc, 5, 5, 105, 100) ;

 SelectObject (hdc, holdbr) ;
 DeleteObject (hbr) ;

 hbr = CreateHatchBrush (HS_CROSS, RGB (255, 0, 0)) ;
 holdbr = SelectObject (hdc, hbr) ;

 Rectangle (hdc, 125, 5, 225, 100) ;

 SelectObject (hdc, holdbr) ;
 DeleteObject (hbr) ;

 hbmp = LoadBitmap (hInst, MAKEINTRESOURCE (IDB_BITMAP1)) ;

 hbr = CreatePatternBrush (hbmp) ;
 holdbr = SelectObject (hdc, hbr) ;

 Rectangle (hdc, 245, 5, 345, 100) ;

 SelectObject (hdc, holdbr) ;
 DeleteObject (hbr) ;
 DeleteObject (hbmp) ;

 EndPaint (hWnd, &ps) ;

 DeleteObject (hbr) ;
}

594 Let Us C

On execution of this program the window shown in Figure 18.4
appears.

 Figure 18.4

In the OnPaint() handler we have drawn three rectangles—first
using a solid brush, second using a hatched brush and third using a
pattern brush. Creating and using a solid brush and hatched brush
is simple. We simply have to make calls to CreateSolidBrush()
and CreateHatchBrush() respectively. For the hatch brush we
have used the style HS_CROSS. There are several other styles
defined in ‘windows.h’ that you can experiment with.

For creating a pattern brush we need to first create a bitmap
(pattern). Instead of creating this pattern, we have used a
readymade bitmap file. You can use any other bitmap file present
on your hard disk.

Bitmaps, menus, icons, cursors that a Windows program may use
are its resources. When the compile such a program we usually
want these resources to become a part of our EXE file. If so done
we do not have to ship these resources separately. To be able to
use a resource (bitmap file in our case) it is not enough to just copy
it in the project directory. Instead we need to carry out the steps
mentioned below to add a bitmap file to the project.

(a) From the ‘Insert’ menu option of VC++ 6.0 select the
‘Resource’ option.

Chapter 18: Graphics Under Windows 595

(b)

(c)
(d)

(e)

From the dialog that pops up select ‘bitmap’ followed by the
import button.
Select the suitable .bmp file.
From the ‘File’ menu select the save option to save the
generated resource script file (Script1.rc). When we select
‘Save’ one more file called ‘resource.h’ also gets created.
Add the ‘Script1.rc’ file to the project using the Project | Add
to Project | Files option.

While using the bitmap in the program it is always referred using
an id. The id is #defined in the file ‘resource.h’. Somewhere
information has to be stored linking the id with the actual .bmp file
on the disk. This is done in the ‘Script1.rc’ file. We need to
include the ‘resource.h’ file in the program.

To create the pattern brush we first need to load the bitmap in
memory. We have done this using the LoadBitmap() API
function. The first parameter passed to this function is the handle
to the instance of the program. When InitInstance() function is
called from WinMain() it stores the instance handle in a global
variable hInst. We have passed this hInst to LoadBitmap(). The
second parameter passed to it is a string representing the bitmap.
This string is created from the resource id using the
MAKEINTRESOURCE macro. The LoadBitmap() function
returns the handle to the bitmap. This handle is then passed to the
CreatePatternBrush() function. This brush is then selected into
the DC and then a rectangle is drawn using it.

Note that if the size of the bitmap is bigger than the rectangle
being drawn then the bitmap is suitably clipped. On the other hand
if the bitmap is smaller than the rectangle it is suitably replicated.

While doing the clean up firstly the brush is deleted followed by
the bitmap.

596 Let Us C

Code and Resources

A program consists of both instructions and static data. Static data
is that portion of the program which is not executed as machine
instructions and which does not change as the program executes.
Static data are character strings, data to create fonts, bitmaps, etc.
The designers of Windows wisely decided that static data should
be handled separately from the program code. The Windows term
for static data is ‘Resource data’, or simply ‘Resources’. By
separating static data from the program code the creators of
Windows were able to use a standard C/C++ compiler to create the
code portion of the finished Windows program, and they only had
to write a ‘Resource compiler’ to create the resources that
Windows programs use. Separating the code from the resource
data has other advantages like reducing memory demands and
making programs more portable. It also means that a programmer
can work on a program’s logic, while a designer works on how the
program looks.

Freehand Drawing, the Paintbrush Style
Even if you are knee high in computers I am sure you must have
used PaintBrush. It provides a facility to draw a freehand drawing
using mouse. Let us see if we too can achieve this. We can indicate
where the freehand drawing begins by clicking the left mouse
button. Then as we move the mouse on the table with the left
mouse button depressed the freehand drawing should get drawn in
the window. This drawing should continue till we do not release
the left mouse button.

The mouse input comes in the form of messages. For free hand
drawing we need to tackle three mouse messages—
WM_LBUTTONDOWN for left button click,
WM_MOUSEMOVE for mouse movement and
WM_LBUTTONUP for releasing the left mouse button. Let us
now see how these messages are tackled for drawing freehand. The

Chapter 18: Graphics Under Windows 597

WndProc() function and the message handlers that perform this
task are given below

int x1, y1, x2, y2 ;

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_DESTROY :
 OnDestroy (hWnd) ;
 break ;

 case WM_LBUTTONDOWN :
 OnLButtonDown (hWnd, LOWORD (lParam),
 HIWORD (lParam)) ;
 break ;

 case WM_LBUTTONUP :
 OnLButtonUp() ;
 break ;

 case WM_MOUSEMOVE :
 OnMouseMove (hWnd, wParam, LOWORD (lParam),
 HIWORD (lParam)) ;
 break ;

 default:
 return DefWindowProc (hWnd, message, wParam, lParam) ;
 }
 return 0 ;
}

void OnLButtonDown (HWND hWnd, int x, int y)
{
 SetCapture (hWnd) ;
 x1 = x ;

598 Let Us C

 y1 = y ;
}

void OnMouseMove (HWND hWnd, int flags, int x, int y)
{
 HDC hdc ;
 if (flags == MK_LBUTTON) /* is left mouse button depressed */
 {
 hdc = GetDC (hWnd) ;
 x2 = x ;
 y2 = y ;
 MoveToEx (hdc, x1, y1, NULL) ;
 LineTo (hdc, x2, y2) ;

 ReleaseDC (hWnd, hdc) ;

 x1 = x2 ;
 y1 = y2 ;
 }
}

void OnLButtonUp()
{
 ReleaseCapture() ;
}

On execution of this program the window shown in Figure 18.5
appears. We can now click the left mouse button with mouse
pointer placed anywhere in the window. We can then drag the
mouse on the table to draw the freehand. The freehand drawing
would continue till we do not release the left mouse button.

Chapter 18: Graphics Under Windows 599

 Figure 18.5

It appears that for drawing the freehand we should simply receive
the mouse coordinates as it is moved and then highlight the pixels
at these coordinates using the SetPixel() API function. However,
if we do so the freehand would be broken at several places. This is
because usually the mouse is dragged pretty fast whereas the
mouse move messages won’t arrive so fast. A solution to this
problem is to construct the freehand using small little line
segments. This is what has been done in our program. These lines
are so small is size that you would not even recognize that the
freehand has been drawn by connecting these small lines.

600 Let Us C

Let us now discuss each mouse handler. When the
WM_LBUTTONDOWN message arrives the WndProc()
function calls the handler OnLButtonDown(). While doing so,
we have passed the mouse coordinates where the click occurred.
These coordinates are obtained in lParam in WndProc(). In
lParam the low order 16 bits contain the current x - coordinate of
the mouse whereas the high order 16 bits contain the y -
coordinate. The LOWORD and HIWORD macros have been
used to separate out these x and y - coordinates from lParam.

In OnLButtonDown() we have preserved the starting point of
freehand in global variables x1 and y1.

When OnMouseMove() gets called it checks whether the left
mouse button stands depressed. If it stands depressed then the
flags variable contains MK_LBUTTON. If it does, then the
current mouse coordinates are set up in the global variables x2, y2.
A line is then drawn between x1, y1 and x2, y2 using the functions
MoveToEx() and LineTo(). Next time around x2, y2 should
become the starting of the next line. Hence the current values of
x2, y2 are stored in x1, y1.

Note that here we have obtained the DC handle using the API
function GetDC(). This is because we are carrying out the
drawing activity in reaction to a message other than WM_PAINT.
Also, the handle obtained using GetDC() should be released using
a call to ReleaseDC() function.

You can try using BeginPaint() / EndPaint() in mouse handlers
and GetDC() / ReleaseDC() in OnPaint(). Can you draw any
conclusions?

Capturing the Mouse

If in the process of drawing the freehand the mouse cursor goes
outside the client area then the window below our window would

Chapter 18: Graphics Under Windows 601

start getting mouse messages. So our window would not receive
any messages. If this has to be avoided then we should ensure that
our window continues to receive mouse messages even when the
cursor goes out of the client area of our window. The process of
doing this is known as mouse capturing.

We have captured the mouse in OnLButtonDown() handler by
calling the API function SetCapture(). As a result, the program
continues to respond to mouse events during freehand drawing
even if the mouse is moved outside the client area. In the
OnLButtonUp() handler we have released the captured mouse by
calling the ReleaseCapture() API function.

Device Context, a Closer Look
Now that we have written a few programs and are comfortable
with idea of selecting objects like font, pen and brush into the DC,
it is time for us to understand how Windows achieves the device
independent drawing using the concept of DC. In fact a DC is
nothing but a structure that holds handles of various drawing
objects like font, pen, brush, etc. A screen DC and its working is
shown in Figure 18.6.

602 Let Us C

O/P Device

Screen

800
Font

600
Mono. Bitmap

400
White Brush

200
Black Pen

Default Drawing Objects

App2

Drawing Object

1000

Blue
Brush

900

Red
Pen

HPEN
HBRUSH

HBITMAP
HFONT

Screen DC

8 0 0.
.
.

Other Info

900
1000
600

App1

Drawing Object

Arial

HFONT = 700

HPEN
HBRUSH

HBITMAP
HFONT

Screen DC

700 .
.
.

Other Info

200
400
600

Figure 18.6

You can make following observations from Figure 18.6:

(a)

(b)

(c)

The DC doesn’t hold the drawing objects like pen, brush, etc.
It merely holds their handles.
With each DC a default monochrome bitmap of size 1 pixel x
1 pixel is associated.
Default objects like black pen, white brush, etc. are shared by
different DCs in same or different applications.

Chapter 18: Graphics Under Windows 603

(d)

(e)

(f)

The drawing objects that an application explicitly creates can
be shared within DCs of the same application, but is never
shared between different applications.
Two different applications would need two different DCs
even though both would be used to draw to the same screen.
In other words with one screen multiple DCs can exist.
A common Device Driver would serve the drawing requests
coming from different applications. (Truly speaking the
request comes from GDI functions that our application calls).

Screen and printer DC is OK, but what purpose would a memory
DC serve? Well, that is what the next program would explain.

Displaying a Bitmap
We are familiar with drawing normal shapes on screen using a
device context. How about drawing images on the screen?
Windows does not permit displaying a bitmap image directly using
a screen DC. This is because there might be color variations in the
screen on which the bitmap was created and the screen on which it
is being displayed. To account for such possibilities while
displaying a bitmap Windows uses a different mechanism—a
‘Memory DC’

The way anything drawn using a screen DC goes to screen,
anything drawn using a printer DC goes to a printer, similarly
anything drawn using a memory DC goes to memory (RAM). But
where in RAM—in the 1 x 1 pixel bitmap whose handle is present
in memory DC. (Note that this handle was of little use In case of
screen/printer DC). Thus if we attempt to draw a line using a
memory DC it would end up on the 1 x 1 pixel bitmap. You would
agree 1 x 1 is too small a place to draw even a small line. Hence
we need to expand the size and color capability of this bitmap.
How can this be done? Simple, just replace the handle of the 1 x 1
bitmap with the handle of a bigger and colored bitmap object. This
is shown in Figure 18.7.

604 Let Us C

HPEN
HBRUSH

HBITMAP
HFONT

200

Other Info

400

800 .
.
.

Memory DC after selecting bitmap

40000

200
Black Pen

400
White Brush

40000
190x220 24 –color

bitmap

800
FontNew O/P Device

HPEN
HBRUSH

HBITMAP
HFONT

200

Other Info

400
405
800 .

.

.

Default Memory DC

800
Font

400
White Brush

200
Black Pen

Default Drawing Objects

405
1x1 Monochrome

bitmap

Default O/P Device

Figure 18.7

What purpose would just increasing the bitmap size/color would
serve? Whatever we draw here would get drawn on the bitmap but
would still not be visible. We can make it visible by simply
copying the bitmap image (including what has been drawn on it) to
the screen DC by using the API function BitBlt().

Before transferring the image to the screen DC we need to make
the memory DC compatible with the screen DC. Here making
compatible means making certain adjustments in the contents of
the memory DC structure. Looking at these values the screen
device driver would suitably adjust the colors when the pixels in

Chapter 18: Graphics Under Windows 605

the bitmap of memory DC is transferred to screen DC using
BitBlt() function.

Let us now take a look at the program that puts all these concepts
in action. The program merely displays the image of a vulture in a
window. Here is the code…

void OnPaint (HWND hWnd)
{
 HDC hdc ;
 HBITMAP hbmp ;
 HDC hmemdc ;
 HGDIOBJ holdbmp ;
 PAINTSTRUCT ps ;

 hdc = BeginPaint (hWnd, &ps) ;

 hbmp = LoadBitmap (hInst, MAKEINTRESOURCE (IDB_BITMAP1)) ;

 hmemdc = CreateCompatibleDC (hdc) ;
 holdbmp = SelectObject (hmemdc, hbmp) ;

 BitBlt (hdc, 10, 20, 190, 220, hmemdc, 0, 0, SRCCOPY) ;

 EndPaint (hWnd, &ps) ;

 SelectObject (hmemdc, holdbmp) ;
 DeleteObject (hbmp) ;
 DeleteDC (hmemdc) ;
}

On executing the program we get the window shown in Figure
18.7.

606 Let Us C

Figure 18.7

As usual we begin our drawing activity in OnPaint() by first
getting the screen DC using the BeginPaint() function. Next we
have loaded the vulture bitmap image in memory by calling the
LoadBitmap() function. Its usage is similar to what we saw while
creating a pattern brush in an earlier section of this chapter. Then
we have created a memory device context and made its properties
compatible with that of the screen DC. To do this we have called
the API function CreateCompatibleDC(). Note that we have
passed the handle to the screen DC to this function. The function
in turn returns the handle to the memory DC. After this we have
selected the loaded bitmap into the memory DC. Lastly, we have
performed a bit block transfer (a bit by bit copy) from memory DC
to screen DC using the function BitBlt(). As a result of this the
vulture now appears in the window.

We have made the call to BitBlt() as shown below:

BitBlt (hdc, 10, 20, 190, 220, hmemdc, 0, 0, SRCCOPY) ;

Chapter 18: Graphics Under Windows 607

Let us now understand its parameters. These are as under:

hdc – Handle to target DC where the bitmap is to be blitted

10, 20 – Position where the bitmap is to be blitted

190, 220 – Width and height of bitmap being blitted

0, 0 – Top left corner of the source image. If we give 10, 20 then
the image from 10, 20 to bottom right corner of the bitmap would
get blitted.

SRCCOPY – Specifies one of the raster-operation codes. These
codes define how the color data for the source rectangle is to be
combined with the color data for the destination rectangle to
achieve the final color. SRCCOPY means that the pixel color of
source should be copied onto the destination pixel of the target.

Animation at Work
Speed is the essence of life. So having the ability to display a
bitmap in a window is fine, but if we can add movement and sound
to it then nothing like it. So let us now see how to achieve this
animation and sound effect.

If we are to animate an object in the window we need to carry out
the following steps:

(a)
(b)
(c)

(d)

Create an image that is to be animated as a resource.
Prepare the image for later display.
Repeatedly display this prepared image at suitable places in
the window taking care that when the next image is displayed
the previous image is erased.
Check for collisions while displaying the prepared image.

Let us now write a program that on execution makes a red colored
ball move in the window. As the ball strikes the walls of the

608 Let Us C

window a noise occurs. Note that the width and height of the red-
colored ball is 22 pixels. Given below is the WndProc() function
and the various message handlers that help achieve animation and
sound effect.

HBITMAP hbmp ;
int x, y ;
HDC hmemdc ;
HGDIOBJ holdbmp ;

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_DESTROY :
 OnDestroy (hWnd) ;
 break ;
 case WM_CREATE :
 OnCreate (hWnd) ;
 break ;
 case WM_TIMER :
 OnTimer (hWnd) ;
 break ;
 default :
 return DefWindowProc (hWnd, message, wParam, lParam) ;
 }
 return 0 ;
}

void OnCreate (HWND hWnd)
{
 RECT r ;
 HDC hdc ;

 hbmp = LoadBitmap (hInst, MAKEINTRESOURCE (IDB_BITMAP1)) ;

 hdc = GetDC (hWnd) ;

Chapter 18: Graphics Under Windows 609

 hmemdc = CreateCompatibleDC (hdc) ;
 holdbmp = SelectObject (hmemdc, hbmp) ;

 ReleaseDC (hWnd, hdc) ;

 srand (time (NULL)) ;

 GetClientRect (hWnd, &r) ;

 x = rand() % r.right - 22 ;
 y = rand() % r.bottom - 22 ;

 SetTimer (hWnd, 1, 50, NULL) ;
}

void OnDestroy (HWND hWnd)
{
 KillTimer (hWnd, 1) ;
 SelectObject (hmemdc, holdbmp) ;
 DeleteDC (hmemdc) ;
 DeleteObject (hbmp) ;
 PostQuitMessage (0) ;
}

void OnTimer (HWND hWnd)
{
 HDC hdc ;
 RECT r ;
 const int wd = 22, ht = 22 ;
 static int dx = 10, dy = 10 ;

 hdc = GetDC (hWnd) ;
 BitBlt (hdc, x, y, wd, ht, hmemdc, 0, 0, WHITENESS) ;
 GetClientRect (hWnd, &r) ;

 x += dx ;
 if (x < 0)
 {

610 Let Us C

 x = 0 ;
 dx = 10 ;
 PlaySound ("chord.wav", NULL, SND_FILENAME | SND_ASYNC) ;
 }
 else if (x > (r.right - wd))
 {
 x = r.right - wd ;
 dx = -10 ;
 PlaySound ("chord.wav", NULL, SND_FILENAME | SND_ASYNC) ;
 }

 y += dy ;
 if (y < 0)
 {
 y = 0 ;
 dy = 10 ;
 PlaySound ("chord.wav", NULL, SND_FILENAME | SND_ASYNC) ;
 }
 else if (y > (r.bottom - ht))
 {
 y = r.bottom - ht ;
 dy = -10 ;
 PlaySound ("chord.wav", NULL, SND_FILENAME | SND_ASYNC);
 }

 BitBlt (hdc, x, y, wd, ht, hmemdc, 0, 0, SRCCOPY) ;
 ReleaseDC (hWnd, hdc) ;
}

From the WndProc() function you can observe that we have
handled two new messages here—WM_CREATE and
WM_TIMER. For these messages we have called the handlers
OnCreate() and OnTimer() respectively. Let us now understand
these handlers one by one

WM_CREATE and OnCreate()

Chapter 18: Graphics Under Windows 611

The WM_CREATE message arrives whenever a new window is
created. Since usually a window is created only once, the one-time
activity that is to be carried out in a program is usually done in
OnCreate() handler. In our program to make the ball move we
need to display it at different places at different times. To do this it
would be necessary to blit the ball image several times. However,
we need to load the image only once. As this is a one-time activity
it has been done in the handler function OnCreate().

You are already familiar with the steps involved in preparing the
image for blitting—loading the bitmap, creating a memory DC,
making it compatible with screen DC and selecting the bitmap in
the memory DC.

Apart from preparing the image for blitting we have also done
some intialialisations like setting up values in some variables to
indicate the initial position of the ball. We have also called the
SetTimer() function. This function tells Windows to post a
message WM_TIMER into the message queue of our application
every 50 milliseconds.

WM_TIMER and OnTimer()

If we are to perform an activity at regular intervals we have two
choices:

(a)

(b)

Use a loop and monitor within the loop when is it time to
perform that activity.
Use a Windows mechanism of timer. This mechanism when
used posts a WM_TIMER message at regular intervals to our
application.

The first method would seriously hamper the responsiveness of the
program. If the control is within the loop and a new message
arrives the message would not get processed unless the control
goes out of the loop. The second choice is better because it makes
the program event driven. That is, whenever WM_TIMER arrives

612 Let Us C

that time its handler does the job that we want to get executed
periodically. At other times the application is free to handle other
messages that come to its queue.

All that we have done in the OnTimer() handler is erase the ball
from previous position and draw it at a new position. We have also
checked if the ball has hit the boundaries of the window. If so we
have played a sound file using the PlaySound() API function and
then changed the direction of the ball.

A Few More Points…

A few more points worth noting before we close our discussion on
animation…

(a)

(b)

(c)

(d)

(e)

One application can set up multiple timers to do different jobs
at different intervals. Hence we need to pass the id of the
timer that we want to set up to the SetTimer() function. In
our case we have specified the id as 1.

For multiple timers Windows would post multiple
WM_TIMER messages. Each time it would pass the timer id
as additional information about the message.

For drawing as well as erasing the ball we have used the same
function—BitBlt(). While erasing we have used the raster
operation code WHITENESS. When we use this code the
color values of the source pixels get ignored. Thus red colored
pixels of ball would get ignored leading to erasure of the ball
in the window.

The size of client area of the window can be obtained using
the GetClientRect() API function.

We want that every time we run the application the initial
position of the ball should be different. To ensure this we
have generated its initial x, y coordinates using the standard
library function rand(). However, this function doesn’t

Chapter 18: Graphics Under Windows 613

generate true random numbers. To ensure that we do get true
random numbers, somehow we need to tie the random number
generation with time, as time of each execution of our
program would be different. This has been achieved by
making the call

srand (time (NULL)) ;

Here time() is function that returns the time. We have further
passed this time to the srand() function.

(f)

(g)

(h)

(i)

To be able to use rand() and srand() functions include the
file ‘stdlib.h’. Similarly for time() function to work include
the file ‘time.h’.

In the call to the PlaySound() function the first parameter is
the name of the wave file that is to be played. If first
parameter is filename then the second has to be NULL. The
third parameter is a set of flags. SND_FILENAME indicates
that the first parameter is the filename, whereas
SND_ASYNC indicates that the sound should be played in
the background.

To be able to use the PlaySound() function we need to link
the library ‘winmm.lib’. This is done by using ‘Project |
Settings’ menu item. On selection of this item a dialog pops
up. In the ‘Link’ tab of this dialog mention the name
‘winmm.lib’ in the ‘Object / Library modules’ edit box.

When the application terminates we have to instruct Windows
not to send WM_TIMER messages to our application any
more. For this we have called the KillTimer() API function
passing to it the ID of the timer.

Windows, the Endless World…
The biggest hurdle in Windows programming is a sound
understanding of its programming model. In this chapter and in the

614 Let Us C

last two I have tried to catch the essence of Windows’ Event
Driven Programming model. Once you have understood it
thoroughly rest is just a matter of understanding and calling the
suitable API functions to get your job done. Windows API is truly
an endless world. It covers areas like Networking, Internet
programming, Telephony, Drawing and Printing, Device I/O,
Imaging, Messaging, Multimedia, Windowing, Database
programming, Shell programming, to name a few. The programs
that we have written have merely scratched the surface. No matter
how many programs that we write under Windows, several still
remain to be written. The intention of this chapter was to unveil
before you, to give you the first glimpse of what is possible under
Windows. The intention all along was not to catch fish for you but
to show you how to catch fish so that you can do fishing all your
life. Having made a sound beginning, rest is for you to explore.
Good luck and happy fishing!

Summary
(a) In DOS, programmers had to write separate graphics code for

every new video adapter. In Windows, the code once written
works on any video adapter.

(b) A Windows program cannot draw directly on an output device
like screen or printer. Instead, it draws to the logical display
surface using device context.

(c) When the window is displayed for the first time, or when it is
moved or resized OnPaint() handler gets called.

(d) It is necessary to obtain the device context before drawing
text or graphics in the client area.

(j) A device context is a structure containing information
required to draw on a display surface. The information
includes color of pen and brush, screen resolution, color
palettes, etc.

(e) To draw using a new pen or brush it is necessary to select
them into the device context.

Chapter 18: Graphics Under Windows 615

(f) If we don’t select any brush or pen into the device context
then the drawing drawn in the client area would be drawn
with the default pen (black pen) and default brush (white
brush).

(g) RGB is a macro representing the Red, Green and Blue
elements of a color. RGB (0, 0, 0) gives black color,
whereas, RGB (255, 255, 255) gives white color.

(h) Animation involves repeatedly drawing the same image at
successive positions.

Exercise
[A] State True or False:

(a) Device independence means the same program is able to work
using different screens, keyboards and printers without
modifications to the program.

(b) The WM_PAINT message is generated whenever the client
area of the window needs to be redrawn.

(c) The API function EndPaint() is used to release the DC.
(d) The default pen in the DC is a solid pen of white color.
(e) The pen thickness for the pen style other than PS_SOLID has

to be 1 pixel.
(f) BeginPaint() and GetDC() can be used interchangeably.
(g) If we drag the mouse from (10, 10) to (110, 100), 100

WM_MOUSEMOVE messages would be posted into the
message queue.

(h) WM_PAINT message is raised when the window contents are
scrolled.

(i) With each DC a default monochrome bitmap of size 1 pixel x
1 pixel is associated.

(j) The WM_CREATE message arrives whenever a window is
displayed.

[B] Answer the following:

(a) What is meant by Device Independent Drawing and how it is
achieved?

616 Let Us C

(b) Explain the significance of WM_PAINT message.

(c) How Windows manages the code and various resources of a

program?

(d) Explain the Windows mechanism of timer.

(e) What do you mean by capturing a mouse?

(f) Write down the steps that need to be carried out to animate an

object.

[C] Attempt the following:

(a) Write a program, which displays "hello" at any place in the
window where you click the left mouse button. If you click
the right mouse button the color of subsequent hellos should
change.

(b) Write a program that would draw a line by joining the new

point where you have clicked the left mouse button with the
last point where you clicked the left mouse button.

(c) Write a program to gradient fill the entire client area with

shades of blue color.

(d) Write a program to create chessboard like boxes (8 X 8) in the

client area. If the window is resized the boxes should also get
resized so that all the 64 boxes are visible at all times.

(e) Write a program that displays only the upper half of a bitmap

of size 40 x 40.
(f) Write a program that displays different text in different colors

and fonts at different places after every 10 seconds.

19 Interaction With
 Hardware

• Hardware Interaction
• Hardware Interaction, DOS Perspective
• Hardware Interaction, Windows Perspective
• Communication with Storage Devices

 The ReadSector() Function
• Accessing Other Storage Devices
• Communication with Keyboard

 Dynamic Linking
 Windows Hooks

• Caps Locked, Permanently
• Did You Press It TTwwiiccee….
• Mangling Keys
• KeyLogger
• Where is This Leading
• Summary
• Exercise

617

618 Let Us C

here are two types of Windows programmers those who are
happy in knowing the things the way they are under
Windows and those who wish to know why the things are

the way they are. This chapter is for the second breed of
programmers. They are the real power users of Windows. Because
it is they who first understand the default working of different
mechanisms that Windows uses and then are able to make those
mechanisms work to their advantage. The focus here would be
restricted to mechanisms that are involved in interaction with the
hardware under the Windows world. Read on and I am sure you
would be on your path to become a powerful Windows
programmer.

T

Hardware Interaction
Primarily interaction with hardware suggests interaction with
peripheral devices. However, its reach is not limited to interaction
with peripherals. The interaction may also involve communicating
with chips present on the motherboard. Thus more correctly,
interaction with hardware would mean interaction with any chip
other than the microprocessor. During this interaction one or more
of the following activities may be performed:

(a)

(b)

(c)

Reacting to events that occur because of user’s interaction
with the hardware. For example, if the user presses a key or
clicks the mouse button then our program may do something.

Reacting to events that do not need explicit user’s interaction.
For example, on ticking of a timer our program may want to
do something.

Explicit communication from a program without the
occurrence of an event. For example, a program may want to
send a character to the printer, or a program may want to
read/write the contents of a sector from the hard disk.

Chapter 19: Interaction With Hardware 619

Let us now see how this interaction is done under different
platforms.

Hardware Interaction, DOS Perspective
Under DOS whenever an external event (like pressing a key or
ticking of timer) occurs a signal called hardware interrupt gets
generated. For different events there are different interrupts. As a
reaction to the occurrence of an interrupt a table called Interrupt
Vector Table (IVT) is looked up. IVT is present in memory. It is
populated with addresses of different BIOS routines during
booting. Depending upon which interrupt has occurred the
Microprocessor picks the address of the appropriate BIOS routine
from IVT and transfers execution control to it. Once the control
reaches the BIOS routine, the code in the BIOS routine interacts
with the hardware. Naturally, for different interrupts different
BIOS routines are called. Since these routines serve the interrupts
they are often called ‘Interrupt Service Routines’ or simply ISRs.

Refer Figure 19.1 to understand this mechanism.

620 Let Us C

IVT

Suitable
ISR is
called

Microprocessor
looks up IVT

Address
of ISR2

Address
of ISR1

BIOS Routines

ISR2

ISR1

Key hit / Mouse click
generates an interrupt

Microprocessor

Figure 19.1

If we want that instead of the default ISR our routine should get
called then it is necessary to store the address of this routine in
IVT. Once this is done whenever a hardware interrupt occurs our
routine’s address from IVT is picked up and the control is
transferred to our routine. For example, we may register our ISR in
IVT to gain finer control over the way key-hits from the keyboard
are tackled. This finer control may involve changing codes of keys
or handling hitting of multiple keys simultaneously.

Explicit communication with the hardware can be done in four
different ways. These are shown in Figure 19.2.

Chapter 19: Interaction With Hardware 621

DOS
Functions

Library
Functions

BIOS
Functions

Direct
Interaction

Hardware

C Program

Figure 19.2

Let us now discuss the pros and cons of using these different
methods to interact with the hardware.

(a)

(b)

Calling DOS Functions

To interact with the hardware a program can call DOS
functions. These functions can either directly interact with the
hardware or they may call BIOS functions which in turn
interact with the hardware. As a result, the programmer is not
required to know all the hardware details to be able to interact
with it. However, since DOS functions do not have names
they have to be called through the mechanism of interrupts.
This is difficult since the programmer has to remember
interrupt service numbers for calling different DOS functions.
Moreover, communication with these functions has to be done
using CPU registers. This leads to lot of difficulties since
different functions use different registers for communication.
So one has to know details of different CPU registers, how to
use them, which one to use when, etc.

Calling BIOS Functions

622 Let Us C

DOS functions can carry out jobs like console I/O, file I/O,
printing, etc. For other operations like generating graphics,
carrying out serial communication, etc. the program has to
call another set of functions called ROM-BIOS functions.
Note that there are some functions in ROM-BIOS that do
same jobs as equivalent DOS functions. BIOS functions suffer
from the same difficulty as DOS functions—they do not have
names. Hence they have to be called using interrupts and
involve heavy usage of registers.

(c)

(d)

Calling Library Functions

We can call library functions which in turn can call
DOS/BIOS functions to carry out the interaction with
hardware. Good examples of these functions are printf() /
scanf() / getch() for interaction with console, absread() /
abswrite() for interaction with disk, bioscom() for
interaction with serial port, etc. But the library doesn’t have a
parallel function for every DOS/BIOS function. Hence at
some point of time one has to learn how to call DOS/BIOS
functions.

Directly interacting with the hardware

At times the programs are needed to directly interact with the
hardware. This has to be done because either there are no
library functions or DOS/BIOS functions to do this, or if they
are there their reach is limited. For example, while writing
good video games one is required to watch the status of
multiple keys simultaneously. The library functions as well as
the DOS/BIOS functions are unable to do this. At such times
we have to interact with the keyboard controller chip directly.

However, direct interaction with the hardware is difficult
because one has to have good knowledge of technical details
of the chip to be able to do so. Moreover, not every technical
detail about how the hardware from a particular manufacturer
works is well documented.

Chapter 19: Interaction With Hardware 623

Hardware Interaction, Windows Perspective
Like DOS, under Windows too a hardware interrupt gets generated
whenever an external event occurs. As a reaction to this signal a
table called Interrupt Descriptor Table (IDT) is looked up and a
corresponding routine for the interrupt gets called. Unlike DOS the
IDT contains addresses of various kernel routines (instead of BIOS
routines). These routines are part of the Windows OS itself. When
the kernel routine is called, it in turn calls the ISR present in the
appropriate device driver. This ISR interacts with the hardware.
Two questions may now occur to you:

(a)

(b)

Why the kernel routine does not interact with the hardware
directly?
Why the ISR of the device driver not registered directly in the
IDT?

Let us find answer to the first question. Every piece of hardware
works differently than the other. As new pieces of hardware come
into existence new code has to be written to be able to interact with
them. If this code is written in the kernel then the kernel would
have to be rewritten and recompiled every time a new hardware
comes into existence. This is practically impossible. Hence the
new code to interact with the device is written in a separate
program called device driver. With every new piece of hardware a
new device driver is provided. This device driver is an extension
of the OS itself.

Let us now answer the second question. Out of the several
components of Windows OS a component called kernel is tightly
integrated with the processor architecture. If the processor
architecture changes then the kernel is bound to change. One of
goals of Windows NT family was to keep the other components of
OS and the device drivers portable across different microprocessor
architectures. All processor architectures may not use IDT for the
registration and lookup mechanism. So, had registration of the
device driver’s ISR in IDT been allowed, then the mechanism

624 Let Us C

would fail on processors which do not use IDT, thereby
compromising portability of device drivers.

Refer Figure 19.3 for understanding the interrupt handling
mechanism under Windows.

Microprocessor
looks up IDT Suitable

Kernel
routine

is
called

IDT

Address
of ISR1

Address
of ISR2

Kernel
routine1

Kernel
routine2

Suitable
ISR is
called

Key hit / Mouse click
generates an interrupt

Microprocessor

ISR
Device Driver

Suitable
ISR is
called

ISR
Device Driver

Figure 19.3

If we are to gain finer control while reacting to interrupts we
would be required to write a device driver containing a new ISR to
do so.

Under Windows explicit communication with hardware is much
different than the way it was done under DOS. This is primarily
because under Windows every device is shared amongst multiple
applications running in memory. To avoid conflict between
different programs accessing the same device simultaneously

Chapter 19: Interaction With Hardware 625

Windows does not permit an application program to directly
access any of the devices. Instead it provides several API functions
to carry out the interaction. These functions have names so calling
them is much easier than calling DOS/BIOS functions. When we
call an API function to interact with a device, it in turn accesses
the device driver program for the device. It is the device driver
program that finally accesses the device. There is a standard way
in which an application can communicate with the device driver. It
is device driver’s responsibility to ensure that multiple requests
coming from different applications are handled without causing
any conflict. In the sections to follow we would see how to
communicate with the device driver to be able to interact with the
hardware.

One last question—won’t the API change if a new device comes
into existence? No it won’t. That is the beauty of the Windows
architecture. All that would change is the device driver program
for the new device. The API functions that we would need to
interact with this new device driver would remain same. This is
shown in Figure 19.4

Windows API

Device Driver

Hardware

C Program

Figure 19.4

626 Let Us C

Communication with Storage Devices
Since DOS is commercially dead the rest of the chapter would
focus on communication with the devices under Windows
platform. We would illustrate this with the help of several
programs.

Let us begin with the one that interacts with the simplest storage
device, namely the floppy disk. Rather than the physical structure
of the floppy disk it is the way the stored information is laid out
and managed that concerns programmers most. Let us understand
how the information is laid out on a floppy disk. Each floppy disk
consists of four logical parts—Boot Sector, File Allocation Table
(FAT), Directory and Data space. Of these, the Boot Sector
contains information about how the disk is organized. That is, how
many sides does it contain, how many tracks are there on each
side, how many sectors are there per track, how many bytes are
there per sector, etc. The files and the directories are stored in the
Data Space. The Directory contains information about the files like
its attributes, name, size, etc. The FAT contains information about
where the files and directories are stored in the data space. Figure
19.5 shows the four logical parts of a 1.44 MB disk.

Chapter 19: Interaction With Hardware 627

BS - Boot Sector F1 - First copy of FAT
F2 - Second copy of FAT D - Root directory structure
DS - Data space

9

10

2
3

1

16
17

D

F2
D

5 46
7

8

DS
DS DS

D DS

D
D

D D

D
D

D
D

D D D

151413
12

11

18 1810

5

2
3

4

1

6
7

8

9

DS

F2 F2 F2

F1
F1

F1
F2
BS

F1 F1 F1

F1
F1

17

15
16

F2
F2

14 13
12

11 F2
F2

F1

Side 0, Track 0 Side 0, Track 1

Figure 19.5

With the logical structure of the floppy disk behind us let us now
write a program that reads the boot sector of a floppy disk and
displays its contents on the screen. But why on earth would we
ever like to do this? Well, that’s what all Windows-based Anti-
viral softwares do when they scan for boot sector viruses. A good
enough reason for us to add the capability to read a boot sector to
our knowledge! Here is the program…

include <stdafx.h>
include <windows.h>
include <stdio.h>
include <conio.h>

pragma pack (1)
struct boot
{
 BYTE jump [3] ;

628 Let Us C

 char bsOemName [8] ;
 WORD bytesperSector ;
 BYTE sectorspercluster ;
 WORD sectorsreservedarea ;
 BYTE copiesFAT ;
 WORD maxrootdirentries ;
 WORD totalSectors ;
 BYTE mediaDescriptor ;
 WORD sectorsperFAT ;
 WORD sectorsperTrack ;
 WORD sides ;
 WORD hiddenSectors ;
 char reserve [480] ;
} ;

void ReadSector (char*src, int ss, int num, void* buff) ;

void main()
{
 struct boot b ;
 ReadSector ("\\\\.\\A:", 0, 1, &b) ;

 printf ("Boot Sector name: %s\n", b.id) ;
 printf ("Bytes per Sector: %d\n", b.bps) ;
 printf ("Sectors per Cluster: %d\n", b.spc) ;
 /* rest of the statements can be written by referring Figure 19.6
 and Appendix G*/
}

void ReadSector (char *src, int ss, int num, void* buff)
{
 HANDLE h ;
 unsigned int br ;
 h = CreateFile (src, GENERIC_READ,
 FILE_SHARE_READ, 0, OPEN_EXISTING, 0, 0) ;
 SetFilePointer (h, (ss * 512), NULL, FILE_BEGIN) ;
 ReadFile (h, buff, 512 * num, &br, NULL))
 CloseHandle (h) ;

Chapter 19: Interaction With Hardware 629

}

The boot sector contains two parts—‘Boot Parameters’ and ‘Disk
Bootstrap Program’. The Boot Parameters are useful while
performing read/write operations on the disk. Figure 19.6 shows
the break up of the boot parameters for a floppy disk.

 Description Length Typical Values

 Jump instruction 3 EB3C90
 OEM name 8 MSWIN4.1
 Bytes per sector 2 512
 Sectors per cluster 1 1
 Reserved sectors 2 1
 Number of FAT copies 1 2
 Max. Root directory entries 2 224
 Total sectors 2 2880

 Media descriptor 1 F0
 Sectors per FAT 2 9
 Sectors per track 2 18
 No. Of sides 2 2
 Hidden sectors 4 0
 Huge sectors 4 0
 BIOS drive number 1 0
 Reserved sectors 1 0
 Boot signature 1 41
 Volume ID 4 349778522
 Volume label 11 ICIT
 File system type 8 FAT12

Figure 19.6

630 Let Us C

Using the breakup of bytes shown in Figure 19.6 our program has
first created a structure called boot. Notice the usage of #pragma
pack to ensure that all elements of the structure are aligned on a 1-
byte boundary, rather than the default 4-byte boundary. Then
comes the surprise—there is no WinMain() in the program. This
is because we want to display the boot sector contents on the
screen rather than in a window. This has been done only for the
sake of simplicity. Remember that our aim is to interact with the
floppy, and not in drawing and painting in a window. If you wish
you can of course adapt this program to display the same contents
in a window. So the program is still a Windows application. Only
difference is that it is built as a ‘Win32 Console Application’ using
VC++. A console application always begins with main() rather
than WinMain().

To actually read the contents of boot sector of the floppy disk the
program makes a call to a user-defined function called
ReadSector(). The ReadSector() function is quite similar to the
absread() library function available in Turbo C/C++ under DOS.

The first parameter passed to ReadSector() is a string that
indicates the storage device from where the reading has to take
place. The syntax for this string is \\machine-name\storage-
device name. In \\.\\A:, we have used ‘.’ for the machine name. A
‘.’ means the same machine on which the program is executing.
Needless to say, A: refers to the floppy drive. The second
parameter is the logical sector number. We have specified this as 0
which means the boot sector in case of a floppy disk. The third
parameter is the number of sectors that we wish to read. This
parameter is specified as 1 since the boot sector occupies only a
single sector. The last parameter is the address of a buffer/variable
that would collect the data that is read from the floppy. Here we
have passed the address of the boot structure variable b. As a
result, the structure variable would be setup with the contents of
the boot sector data at the end of the function call.

Chapter 19: Interaction With Hardware 631

Once the contents of the boot sector have been read into the
structure variable b we have displayed the first few of them on the
screen using printf(). If you wish you can print the rest of the
contents as well.

The ReadSector() Function

With the preliminaries over let us now concentrate on the real stuff
in this program, i.e. the ReadSector() function. This function
begins by making a call to the CreateFile() API function as
shown below:

h = CreateFile (src, GENERIC_READ,
 FILE_SHARE_READ, 0, OPEN_EXISTING, 0, 0) ;

The CreateFile() API function is very versatile. Anytime we are
to communicate with a device we have to firstly call this API
function. The CreateFile() function opens the specified device as
a file. Windows treats all devices just like files on disk. Reading
from this file means reading from the device.

The CreateFile() API function takes several parameters. The first
parameter is the string specifying the device to be opened. The
second parameter is a set of flags that are used to specify the
desired access to the file (representing the device) about to be
opened. By specifying the GENERIC_READ flag we have
indicated that we just wish to read from the file (device). The third
parameter specifies the sharing access for the file (device). Since
floppy drive is a shared resource across all the running
applications we have specified the FILE_SHARE_READ flag. In
general while interacting with any hardware the sharing flag for
the file (device) must always be set to this value since every piece
of hardware is shared amongst all the running applications. The
fourth parameter indicates security access for the file (device).
Since we are not concerned with security here we have specified
the value as 0. The fifth parameter specifies what action to take if

632 Let Us C

the file already exists. When using CreateFile() for device access
we must always specify this parameter as OPEN_EXISTING.
Since the floppy disk file was already opened by the OS a long
time back during the booting. The remaining two parameters are
not used when using CreateFile() API function for device access.
Hence we have passed a 0 value for them. If the call to
CreateFile() succeeds then we obtain a handle to the file (device).

The device file mechanism allows us to read from the file (device)
by setting the file pointer using the SetFilePointer() API function
and then reading the file using the ReadFile() API function. Since
every sector is 512 bytes long, to read from the nth sector we need
to set the file pointer to the 512 * n bytes from the start of the file.
The first parameter to SetFilePointer() is the handle of the device
file that we obtained by calling the CreateFile() function. The
second parameter is the byte offset from where the reading is to
begin. This second parameter is relative to the third parameter. We
have specified the third parameter as FILE_BEGIN which means
the byte offset is relative to the start of the file.

To actually read from the device file we have made a call to the
ReadFile() API function. The ReadFile() function is very easy to
use. The first parameter is the handle of the file (device), the
second parameter is the address of a buffer where the read contents
should be dumped. The third parameter is the count of bytes that
have to be read. We have specified the value as 512 * num so as to
read num sectors. The fourth parameter to ReadFile() is the
address of an unsigned int variable which is set up with the count
of bytes that the function was successfully able to read. Lastly,
once our work with the device is over we should close the file
(device) using the CloseHandle() API function.

Though ReadSector() doesn’t need it, there does exist a
counterpart of the ReadFile() function. Its name is WriteFile().
This API function can be used to write to the file (device). The
parameters of WriteFile() are same as that of ReadFile(). Note

Chapter 19: Interaction With Hardware 633

that when WriteFile() is to be used we need to specify the
GENERIC_WRITE flag in the call to CreateFile() API
function. Given below is the code of WriteSector() function that
works exactly opposite to the ReadSector() function.

void WriteSector (char *src, int ss, int num, void* buff)
{
 HANDLE h ;
 unsigned int br ;
 h = CreateFile (src, GENERIC_WRITE,
 FILE_SHARE_WRITE, 0, OPEN_EXISTING, 0, 0) ;
 SetFilePointer (h, (ss * 512), NULL, FILE_BEGIN) ;
 WriteFile (h, buff, 512 * num, &br, NULL))
 CloseHandle (h) ;
}

Accessing Other Storage Devices
Note that the mechanism of reading from or writing to any device
remains standard under Windows. We simply need to change the
string that specifies the device. Here are some sample calls for
reading/writing from/to various devices:

ReadSector ("\\\\.\\a:", 0, 1, &b) ; /* reading from 2nd floppy drive */
ReadSector ("\\\\.\\d:", 0, 1, buffer) ; /* reading from a CD-ROM drive */
WriteSector ("\\\\.\\c:", 0, 1, &b) ; /* writing to a hard disk */
ReadSector ("\\\\.\\physicaldrive0", 0, 1, &b) ; /* reading partition table */

Here are a few interesting points that you must note.

(a)

(b)

If we are to read from the second floppy drive we should
replace A: with B: while calling ReadSector().

To read from storage devices like hard disk drive or CD-ROM
or ZIP drive, etc. use the string with appropriate drive letter.
The string can be in the range \\.\C: to \\.\Z:.

634 Let Us C

(c)

(d)

(e)

(a)

To read from the CD-ROM just specify the drive letter of the
drive. Note that CD-ROMs follow a different storage
organization known as CD File System (CDFS).

The hard disk is often divided into multiple partitions. Details
like the place at which each partition begins and ends, the size
of each partition, whether it is a bootable partition or not, etc.
are stored in a table on the disk. This table is often called
‘Partition Table’. If we are to read the partition table contents
we can do so by using the string \\.\physicaldrive0.

Using \\.\physicaldrive0 we can also read contents of any
other parts of the disk. Here 0 represents the first hard disk in
the system. If we are to read from the second hard disk we
need to use 1 in place of 0.

Communication with Keyboard
Like mouse messages there also exist messages for keyboard.
These are WM_KEYDOWN, WM_KEYUP and WM_CHAR.
Of these, WM_KEYDOWN and WM_KEYUP are sent to an
application (which has the input focus) whenever the key is
pressed and released respectively. The additional information in
case of these messages is the code of the key being pressed or
released. When we tackle WM_KEYDOWN or WM_KEYUP
we need to ourselves check the status of toggle keys like NumLock
and CapsLock and shift keys like Ctrl, Alt and Shift. If we wish to
avoid all this checking we can tackle the WM_CHAR message
instead.

What is mentioned above is the normal procedure followed by
most Windows applications. However, if we wish to go a step
further and deal with the keyboard we need to tackle it differently.
For example, suppose we are to perform one of the following jobs:

Once you hit any key CapsLock should become on. Once it
becomes on it should remain permanently on.

Chapter 19: Interaction With Hardware 635

(b)
(c)

If we hit a key once it should appear twice on the screen.
If we hit a key A then B should appear on the screen, if we hit
a B then C should occur and so on.

Note that all these effects should work on a system-wide basis for
all Win32 applications. To be able to achieve these effect we need
understand two important mechanisms—‘Dynamic Linking’ and
‘Windows Hooks’. Let us understand these mechanisms one by
one.

Dynamic Linking

As we saw in Chapter 16, Windows permits linking of libraries
stored in a .DLL file during execution. A .DLL file is a binary file
that cannot execute on its own. It contains functions that can be
shared between several applications running in memory.

Windows Hooks

 As the name suggests, the hook mechanism permits us to intercept
and alter the flow of messages in the OS before they reach the
application. Since hooks are used to alter the messaging
mechanism on a system-wide basis the code for hooking has to be
written in a DLL. The hooking mechanism involves writing a hook
procedure in a DLL file and registering this procedure with the
OS. Since the DLL cannot execute on its own we need a separate
program that would load and execute the DLL.

For different messages there are different types of hooks. For
example, for keyboard messages there is a keyboard hook, for
mouse messages there is mouse hook, etc. You can refer MSDN
for nearly a dozen more types of hooks. Here we would restrict our
discussion only to the keyboard hook.

636 Let Us C

Before we proceed to write our own hook procedure let us
understand the normal working of the keyboard messages. This is
illustrated in Figure 19.7.

Application2 Application2
Msg. Queue

Application1
Msg. Queue

Application1

Place key code in System
Msg. queue by calling
keybd_event()

 OS

Obtain key code by
interacting with
KB controller

Interrupt

System Msg. queue

Kernel Routine

Device Driver ISR

Figure 19.7

With reference to Figure 19.7 here is a list of steps that are carried
out when we press a key from the keyboard:

Chapter 19: Interaction With Hardware 637

(a)

(b)
(c)

(d)

(e)

(a)
(b)
(c)

(a)

(b)

On pressing a key an interrupt occurs and the corresponding
kernel routine gets called.
The kernel routine calls the ISR of the keyboard device driver.
The ISR communicates with the keyboard controller and
obtains the code of the key pressed.
The ISR calls a OS function keybd_event() to post the key
code to the System Message Queue.
The OS retrieves the message from the System Message
Queue and posts it into the message queue of the application
with regard to which the key has been pressed.

Let us now see what needs to be done if we are to alter this
procedure. We simply need to register our hook procedure with the
OS. As a result, our hook procedure would receive the message
before it is dispatched to the appropriate Application Message
Queue. Since our hook procedure gets a first shot at the message it
can now alter the working in the following three ways:

It can suppress the message altogether
It can change the message
It can post more messages into the System Message Queue
using the keybd_event() function.

Let us now put all this theory into practice by writing a few
programs.

Caps Locked, Permanently
Let us now write a program that keeps the CapsLock permanently
on. This effect would come into being when the first key is hit
subsequent to the execution of our program. In fact there would be
two programs:

A DLL containing a hook procedure that achieves the
CapsLock effect.
An application EXE which loads the DLL in memory.

Given below is the source code of the DLL program.

638 Let Us C

/* hook.c */

include <windows.h>

static HHOOK hkb = NULL ;
HANDLE h ;

BOOL __stdcall DllMain (HANDLE hModule, DWORD ul_reason_for_call,
 LPVOID lpReserved)
{
 h = hModule ;
 return TRUE ;
}

BOOL __declspec (dllexport) installhook()
{
 hkb = SetWindowsHookEx (WH_KEYBOARD,
 (HOOKPROC) KeyboardProc, (HINSTANCE) h, 0) ;
 if (hkb == NULL)
 return FALSE ;

 return TRUE ;
}

LRESULT __declspec (dllexport) __stdcall KeyboardProc (int nCode,
 WPARAM wParam, LPARAM lParam)
{
 short int state ;

 if (nCode < 0)
 return CallNextHookEx (hkb, nCode, wParam, lParam) ;

 if ((nCode == HC_ACTION) &&
 ((DWORD) lParam & 0x40000000))
 {
 state = GetKeyState (VK_CAPITAL) ;
 if ((state & 1)== 0) /* if off */

Chapter 19: Interaction With Hardware 639

 {
 keybd_event (VK_CAPITAL , 0,
 KEYEVENTF_EXTENDEDKEY, 0) ;
 keybd_event (VK_CAPITAL , 0,
 KEYEVENTF_EXTENDEDKEY | KEYEVENTF_KEYUP, 0) ;
 }
 }
 return CallNextHookEx (hkb, nCode, wParam, lParam) ;
}

BOOL __declspec (dllexport) removehook()
{
 return UnhookWindowsHookEx (hkb) ;
}

Follow the steps mentioned below to create this program:

(a)
(b)

(c)

(d)
(e)

(f)

Select ‘File | New’ option to start a new project in VC++.
From the ‘Project’ tab select ‘Win32 Dynamic-Link Library’
and click on the ‘Next’ button.
In the ‘Win32 Dynamic-link Library Step 1 of 1’ select “An
empty DLL project” and click on the ‘Finish’ button.
Select ‘File | New’ option.
From the ‘File’ tab select ‘C++ source file’ and give the file
name as ‘hook.c’. Type the code listed above in this file.
Compile the program to generate the .DLL file.

Note that this program doesn’t contain WinMain() since the
program on compilation should not execute on its own. It has been
replaced by a function called DllMain(). This function acts as
entry point of the DLL program. It gets called when the DLL is
loaded or unloaded.

When the application loads the DLL the DllMain() function
would be called. In this function we have merely stored the handle
to the DLL that has been loaded in memory into a global variable
h for later use.

640 Let Us C

Those functions in a DLL that can be called from outside it are
called exported functions. Our DLL contains three such
functions—installhook(), removehook() and KeyboardProc().
To indicate to the compiler that a function in a DLL is an exported
function we have to pre-qualify it with __declspec (dllexport).
These functions would be called from the second program. This
second program is a normal GUI application created in the same
way that we did applications in Chapters 17 and 18. The handlers
for messages WM_CREATE and WM_DESTROY are given
below:

/* capslocked.c */

HINSTANCE h ;

void OnCreate (HWND hWnd)
{
 BOOL (CALLBACK *p)() ;

 h = LoadLibrary ("hook.dll") ;
 if (h != NULL)
 {
 p = GetProcAddress (h, "installhook") ;
 (*p)() ; /* calls installhoook() function */
 }
}

void OnDestroy (HWND hWnd)
{
 BOOL (CALLBACK *p)() ;

 p = GetProcAddress (h, "removehook") ;
 (*p)() ; /* calls removehoook() function */

 FreeLibrary (h) ;
 PostQuitMessage (0) ;
}

Chapter 19: Interaction With Hardware 641

As we know, the OnCreate() and OnDestroy() handlers would
be called when the WM_CREATE and WM_DESTROY
messages arrive respectively. In OnCreate() we have loaded the
DLL containing the hook procedure. To do this we have called the
LoadLibrary() API function. Once the DLL is loaded we have
obtained the address of the exported function installhook() using
the GetProcAddress() API function. The returned address is
stored in p, where p is a pointer to the installhook() function.
Using this pointer we have then called the installhook() function.

In the installhook() function we have called the API function
SetWindowsHookEx() to register our hook procedure with the
OS as shown below:

hkb = SetWindowsHookEx (WH_KEYBOARD,
 (HOOKPROC) KeyboardProc, (HINSTANCE) h, 0) ;

Here the first parameter is the type of hook that we wish to
register, whereas the second parameter is the address of our hook
procedure KeyboardProc(). hkb stores the handle of the hook
installed.

From now on whenever a keyboard message is retrieved by the OS
from the System Message Queue the message is firstly passed to
our hook procedure, i.e. to KeyboardProc() function. Inside this
function we have written code to ensure that the CapsLock always
remains on. To begin with we have checked whether nCode
parameter is less than 0. If it so then it necessary to call the next
hook procedure. The MSDN documentation suggests that “if code
is less than zero, the hook procedure must pass the message to the
CallNextHookEx() function without further processing and
should return the value returned by CallNextHookEx()”.

Note that there can be several hook procedures installed by
different programs, thus forming a chain of hook procedures.
These hook procedures always get called in an order that is

642 Let Us C

opposite to their order of installation. This means the last hook
procedure installed is the first one to get called.

If the nCode parameter contains a value HC_ACTION it means
that the message that was just removed form the system message
queue was a keyboard message. If it is so, then we have checked
the previous state of the key before the message was sent. If the
state of the key was ‘depressed’ (30th bit of lParam is 1) then we
have obtained the state of the CapsLock key by calling the
GetKeyState() API function. If it is off (0th bit of state variable is
0) then we have turned on the CapsLock by simulating a keypress.
For this simulation we have called the function keybd_event()
twice—first call is for pressing the CapsLock and second is for
releasing it. Note that keybd_event() creates a keyboard message
from the parameters that we pass to it and posts it into the system
message queue. The parameter VK_CAPITAL represents the code
for the CapsLock key.

A word of caution! When we use keybd_event() to post keyboard
message for a simulated CapsLock keypress, once again our hook
procedure would be called when these messages are retrieved from
the system message queue. But this time the CapsLock would be
on so we would end up passing control to the next hook procedure
through a call to CallNextHookEx().

When we close the application window as usual the OnDestroy()
would be called. In this handler we have obtained the address of
the removehook() exported function and called it. In the
removehook() function we have unregistered our hook procedure
by calling the UnhookWindowsHookEx() API function. Note
that to this function we have passed the handle to our hook. As a
result our hook procedure is now removed from the hook chain.
Hereafter the CapsLock would behave normally. Having unhooked
our hook procedure the control would return to OnDestroy()
handler where we have promptly unload the DLL from memory by
calling the FreeLibrary() API function.

Chapter 19: Interaction With Hardware 643

One last point about this program—the ‘hook.dll’ file should be
copied into the directory of the application’s EXE before executing
the EXE.

Did You Press It TTwwiiccee….
With the power of windows hooks below your belt you are into the
league of power programmers of Windows. So how about tasting
the power some bit more. How about writing a program that would
make every key pressed in any Windows application appear twice.
Here is the code for the hook procedure.

LRESULT __declspec (dllexport) __stdcall KeyboardProc (int nCode,
 WPARAM wParam, LPARAM lParam)
{
 static BYTE key ;
 static BOOL flag = FALSE ;

 if (nCode < 0)
 return CallNextHookEx (hkb, nCode, wParam, lParam) ;

 if ((nCode == HC_ACTION) &&
 ((DWORD) lParam & 0x80000000) == 0)
 {
 if (flag == FALSE)
 {
 key = wParam ;
 keybd_event (key , 0, KEYEVENTF_EXTENDEDKEY, 0) ;
 flag = TRUE ;
 }
 else
 {
 if (key == (BYTE) wParam)
 flag = FALSE ;
 }
 }
 return CallNextHookEx (hkb, nCode, wParam, lParam) ;

644 Let Us C

}

In this hook procedure once again we have checked if the nCode
parameter contains a value HC_ACTION. If it does then we have
checked the present state of the key in question. If the present state
of the key is ‘pressed’ (31th bit of lParam is 0) then we have
posted the message for the same key into the system message
queue by calling the keybd_event(). However, this may lead to a
serious problem. Can you imagine which? The message that we
post, once retrieved, would again bring the control to our hook
procedure. Once again the conditions would become true and we
would post the same message again. This would go on and on.
This can be prevented by using a using a simple flag variable as
shown in the code.

Note that the rest of the functions in the DLL file are exactly same
as in the previous program. So also is the application program.

Mangling Keys
How about one more program to bolster your confidence? Let us
try one that would mangle every key that is pressed. That is,
convert an A to a B, B to C, C to D, etc. This would be fairly
straight-forward. We simply have to increment the key code before
posting it into the system message queue. Also, further processing
of key has to be prevented. This can be achieved by simply
returning a non-zero value from the hook procedure (thus
bypassing the call to CallNextHookEx()). This is shown in the
following hook procedure.

LRESULT __declspec (dllexport) __stdcall KeyboardProc (int nCode,
 WPARAM wParam, LPARAM lParam)
{
 static BYTE key ;
 static BOOL flag = FALSE ;

Chapter 19: Interaction With Hardware 645

 if (nCode < 0)
 return CallNextHookEx (hkb, nCode, wParam, lParam) ;

 if ((nCode == HC_ACTION) &&
 ((DWORD) lParam & 0x80000000) == 0)
 {
 if (flag == FALSE)
 {
 key = wParam ;
 key ++ ;
 keybd_event (key , 0, KEYEVENTF_EXTENDEDKEY, 0) ;
 flag = TRUE ;
 return 1 ;
 }
 else
 {
 if (key == (BYTE) wParam)
 flag = FALSE ;
 }
 }
 return CallNextHookEx (hkb, nCode, wParam, lParam) ;
}

KeyLogger
There are several malicious programs that are floating on the net
that steal away your passwords. These programs keep a log of
every key that is pressed while entering passwords or credit card
numbers. These programs make use of windows hooks to trap
every key that is pressed. With the knowledge that you have
gained from the past three programs this may not be a big deal.

However, such key logger programs deviate from the ones that we
developed in three fundamental ways:

(a) They do not pop any window on the screen; otherwise the
program’s presence would get detected.

646 Let Us C

(b)

(c)

(a)

(b)

(c)

These programs also hide themselves from the Task Manager
so that the user cannot terminate them.

The logged keys are secretly sent over the net to the malicious
users who write such programs. Once the logged keys are
known it would be possible to break into the system.

Where is This Leading
Even for a moment do not create an impression in you mind that
Windows Hooks are only for notorious activities. There are many
good things that they can be put to use for. These activities
include:

Multimedia keyboards have special key like Cut, Copy, Paste,
etc. Such keyboards also come with special programs which
when installed know how to tackle these special keys. On
pressing these keys these programs use the hook mechanism
to place the simulated keys in the system message queue.

Many demo programs once executed automatically move the
mouse pointer to a menu or a toolbar or any such item to
demonstrate some feature of the software. To manage these
actions a windows hook called Journal hook is used.

For physically impaired persons a keyboard can be simulated
on the screen and the mouse clicks on this keyboard can be
communicated to Windows as actual key hits. This again can
be achieved using mouse and keyboard hook.

There can be many more such examples. But the above three I
believe would be ample to prove to you the constructive side of the
powerful mechanism called Windows Hooks.

Chapter 19: Interaction With Hardware 647

Summary
(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(a)

(b)

(c)

Hardware interaction can happen in two ways: (1) When the
user interacts with the hardware and the program reacts to it.
(2) When the program interacts with the hardware without any
user intervention.
In DOS when the user interacts with the hardware an ISR gets
called which interacts with the hardware. In Windows the
same thing is done by the device driver’s ISR.
In DOS when the program has to interact with the hardware it
can do so by using library functions, DOS/BIOS routines or
by directly interacting with the hardware. In Windows the
same thing can be done by using API functions.
Under Windows to gain finer control over the hardware we
are required to write a device driver program.
Interaction with the any device can be done using API
functions like CreateFile(), ReadFile(), WriteFile() and
CloseHandle().
Different strings have to be passed to the CreateFile()
functions for interacting with different devices.
Windows provides a powerful mechanism called hooks that
can alter the flow of messages before they reach the
application.
Windows hook procedures should be written in a DLL since
they work on a system wide basis.
Windows hooks can be put to many good uses.

Exercise

[A] State True or False:

In MS-DOS on occurrence of an interrupt values from IDT
are used to call the appropriate kernel routine.
Under Windows on occurrence of an interrupt the kernel
routine calls the appropriate device driver’s ISR.
Under Windows an application can interact with the hardware
by directly calling its device driver’s routines.

648 Let Us C

(d)

(e)
(f)

(g)

(h)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Under Windows we can write device drivers to extend the OS
itself.
ReadSector() and WriteSector() are API functions.
While reading a sector from the disk the CreateFile()
function creates a file on the disk.
The Windows API function to stop communication with a
device is CloseFile().
The ReadFile() and WriteFile() API functions can only
perform reading or writing from/to a disk file.

[B] Answer the following:

How is hardware interaction under Windows different that
that under DOS?

What is the advantage of writing code in a DLL?

Explain the Windows hooks mechanism.

What is the standard way of communicating with a device
under Windows?

Write a program to read the contents of Boot Sector of a 32-
bit FAT file system and print them on the screen. Refer
Appendix G for details about the contents of the boot sector.

Write a program that ensures that the key ‘A’ is completely
disabled across all applications.

Write a program that closes any window just by placing the
cursor on the ‘Close’ button in the title bar of it.

20 C Under Linux

• What is Linux
• C Programming Under Linux
• The ‘Hello Linux’ Program
• Processes
• Parent and Child Processes
• More Processes
• Zombies and Orphans
• One Interesting Fact
• Summary
• Exercise

649

650 Let Us C

oday the programming world is divided into two major
camps—the Windows world and the Linux world. Since its
humble beginning about a decade ago, Linux has steadily

drawn the attention of programmers across the globe and has
successfully created a community of its own. How big and
committed is this community is one of the hottest debates that is
raging in all parts of the world. You can look at the hot discussions
and the flame wars on this issue on numerous sites on the internet.
Before you decide to join the Windows or the Linux camp you
should first get familiar with both of them. The last 4 chapters
concentrated on Windows programming. This and the next one
would deal with Linux programming. Without any further
discussions let us now set out on the Linux voyage. I hope you
find the journey interesting and exciting.

T

What is Linux
Linux is a clone of the Unix operating system. Its kernel was
written from scratch by Linus Torvalds with assistance from a
loosely-knit team of programmers across the world on Internet. It
has all the features you would expect in a modern OS. Moreover,
unlike Windows or Unix, Linux is available completely free of
cost. The kernel of Linux is available in source code form.
Anybody is free to change it to suit his requirement, with a
precondition that the changed kernel can be distributed only in the
source code form. Several programs, frameworks, utilities have
been built around the Linux kernel. A common user may not want
the headaches of downloading the kernel, going through the
complicated compilation process, then downloading the
frameworks, programs and utilities. Hence many organizations
have come forward to make this job easy. They distribute the
precompiled kernel, programs, utilities and frameworks on a
common media. Moreover, they also provide installation scripts
for easy installations of the Linux OS and applications. Some of
the popular distributions are RedHat, SUSE, Caldera, Debian,
Mandrake, Slackware, etc. Each of them contain the same kernel

Chapter 19: Interaction With Hardware 651

but may contain different application programs, libraries,
frameworks, installation scripts, utilities, etc. Which one is better
than the other is only a matter of taste.

Linux was first developed for x86-based PCs (386 or higher).
These days it also runs on Compaq Alpha AXP, Sun SPARC,
Motorola 68000 machines (like Atari ST and Amiga), MIPS,
PowerPC, ARM, Intel Itanium, SuperH, etc. Thus Linux works on
literally every conceivable microprocessor architecture.

Under Linux one is faced with simply too many choices of Linux
distributions, graphical shells and managers, editors, compilers,
linkers, debuggers, etc. For simplicity (in my opinion) I have
chosen the following combination:

Linux Distribution - Red Hat Linux 9.0
Console Shell - BASH
Graphical Shell - KDE 3.1-10
Editor - KWrite
Compiler - GNU C and C++ compiler (gcc)

We would be using and discussing these in the sections to follow.

C Programming Under Linux
How is C under Linux any different than C under DOS or C under
Windows? Well, it is same as well as different. It is same to the
extent of using language elements like data types, control
instructions and the overall syntax. The usage of standard library
functions is also same even though the implementation of each
might be different under different OS. For example, a printf()
would work under all OSs, but the way it is defined is likely to be
different for different OSs. The programmer however doesn’t
suffer because of this since he can continue to call printf() the
same way no matter how it is implemented.

652 Let Us C

But there the similarity ends. If we are to build programs that
utilize the features offered by the OS then things are bound to be
different across OSs. For example, if we are to write a C program
that would create a Window and display a message “hello” at the
point where the user clicks the left mouse button. The architecture
of this program would be very closely tied with the OS under
which it is being built. This is because the mechanisms for creating
a window, reporting a mouse click, handling a mouse click,
displaying the message, closing the window, etc. are very closely
tied with the OS for which the program is being built. In short the
programming architecture (better known as programming model)
for each OS is different. Hence naturally the program that achieves
the same task under different OS would have to be different.

The ‘Hello Linux’ Program
As with any new platform we would begin our journey in the
Linux world by creating a ‘hello world’ program. Here is the
source code....

int main()
{
 printf ("Hello Linux\n") ;
 return 0 ;
}

The program is exactly same as compared to a console program
under DOS/Windows. It begins with main() and uses printf()
standard library function to produce its output. So what is the
difference? The difference is in the way programs are typed,
compiled and executed. The steps for typing, compiling and
executing the program are discussed below.

The first hurdle to cross is the typing of this program. Though any
editor can be used to do so, we have preferred to use the editor
called ‘KWrite’. This is because it is a very simple yet elegant

Chapter 19: Interaction With Hardware 653

editor compared to other editors like ‘vi’ or ‘emacs’. Note that
KWrite is a text editor and is a part of K Desktop environment
(KDE). Installation of Linux and KDE is discussed in Appendix H.
Once KDE is started select the following command from the
desktop panel to start KWrite:

K Menu | Accessories | More Accessories | KWrite

If you face any difficulty in starting the KWrite editor please refer
Appendix H. Assuming that you have been able to start KWrite
successfully, carry out the following steps:

(a)
(b)

(c)

(d)

(e)

(f)

Type the program and save it under the name ‘hello.c’.
At the command prompt switch to the directory containing
‘hello.c’ using the cd command.
Now compile the program using the gcc compiler as shown
below:

 # gcc hello.c

On successful compilation gcc produces a file named ‘a.out’.
This file contains the machine code of the program which can
now be executed.
Execute the program using the following command.

 # ./a.out

Now you should be able to see the output ‘Hello Linux’ on
the screen.

Having created a Hello Linux program and gone through the edit-
compile-execute cycle once let us now turn our attention to Linux
specific programming. We will begin with processes.

Processes
Gone are the days when only one job (task) could be executed in
memory at any time. Today the modern OSs like Windows and

654 Let Us C

Linux permit execution of several tasks simultaneously. Hence
these OSs are aptly called ‘Multitasking’ OSs.

In Linux each running task is known as a ‘process’. Even though it
may appear that several processes are being executed by the
microprocessor simultaneously, in actuality it is not so. What
happens is that the microprocessor divides the execution time
equally among all the running processes. Thus each process gets
the microprocessor’s attention in a round robin manner. Once the
time-slice allocated for a process expires the operation that it is
currently executing is put on hold and the microprocessor now
directs its attention to the next process. Thus at any given moment
if we take the snapshot of memory only one process is being
executed by the microprocessor. The switching of processes
happens so fast that we get a false impression that the processor is
executing several processes simultaneously.

The scheduling of processes is done by a program called
‘Scheduler’ which is a vital component of the Linux OS. This
scheduler program is fairly complex. Before switching over to the
next thread it stores the information about the current process. This
includes current values of CPU registers, contents of System Stack
and Application Stack, etc. When this process again gets the time
slot these values are restored. This process of shifting over from
one thread to another is often called a Context Switch. Note that
Linux uses preemptive scheduling, meaning thereby that the
context switch is performed as soon as the time slot allocated to
the process is over, no matter whether the process has completed
its job or not.

Kernel assigns each process running in memory a unique ID to
distinguish it from other running processes. This ID is often known
as processes ID or simply PID. It is very simple to print the PID of
a running process programmatically. Here is the program that
achieves this…

Chapter 19: Interaction With Hardware 655

int main()
{
 printf ("Process ID = %d", getpid()) ;
}

Here getpid() is a library function which returns the process ID
of the calling process. When the execution of the program comes
to an end the process stands terminated. Every time we run the
program a new process is created. Hence the kernel assigns a new
ID to the process each time. This can be verified by executing the
program several times—each time it would produce a different
output.

Parent and Child Processes
As we know, our running program is a process. From this process
we can create another process. There is a parent-child relationship
between the two processes. The way to achieve this is by using a
library function called fork(). This function splits the running
process into two processes, the existing one is known as parent and
the new process is known as child. Here is a program that
demonstrates this…

include <sys/types.h>
int main()
{
 printf ("Before Forking\n") ;
 fork() ;
 printf ("After Forking\n") ;
}

Here is the output of the program…

Before Forking
After Forking
After Forking

656 Let Us C

Watch the output of the program. You can notice that all the
statements after the fork() are executed twice—once by the parent
process and second time by the child process. In other words
fork() has managed to split our process into two.

But why on earth would we like to do this? At times we want our
program to perform two jobs simultaneously. Since these jobs may
be inter-related we may not want to create two different programs
to perform them. Let me give you an example. Suppose we want
perform two jobs—copy contents of source file to target file and
display an animated GIF file indicating that the file copy is in
progress. The GIF file should continue to play till file copy is
taking place. Once the copying is over the playing of the GIF file
should be stopped. Since both these jobs are inter-related they
cannot be performed in two different programs. Also, they cannot
be performed one after another. Both jobs should be performed
simultaneously.

At such times we would want to use fork() to create a child
process and then write the program in such a manner that file copy
is done by the parent and displaying of animated GIF file is done
by the child process. The following program shows how this can
be achieved. Note that the issue here is to show how to perform
two different but inter-related jobs simultaneously. Hence I have
skipped the actual code for file copying and playing the animated
GIF file.

include <sys/types.h>

int main()
{
 int pid ;
 pid = fork() ;
 if (pid == 0)
 {
 printf ("In child process\n") ;
 /* code to play animated GIF file */

Chapter 19: Interaction With Hardware 657

 }
 else
 {
 printf ("In parent process\n") ;
 /* code to copy file */
 }
}

As we know, fork() creates a child process and duplicates the
code of the parent process in the child process. There onwards the
execution of the fork() function continues in both the processes.
Thus the duplication code inside fork() is executed once, whereas
the remaining code inside it is executed in both the parent as well
as the child process. Hence control would come back from fork()
twice, even though it is actually called only once. When control
returns from fork() of the parent process it returns the PID of the
child process, whereas when control returns from fork() of the
child process it always returns a 0. This can be exploited by our
program to segregate the code that we want to execute in the
parent process from the code that we want to execute in the child
process. We have done this in our program using an if statement.
In the parent process the ‘else block’ would get executed, whereas
in the child process the ‘if block’ would get executed.

Let us now write one more program. This program would use the
fork() call to create a child process. In the child process we would
print the PID of child and its parent, whereas in the parent process
we would print the PID of the parent and its child. Here is the
program…

include <sys/types.h>
int main()
{
 int pid ;
 pid = fork() ;

 if (pid == 0)

658 Let Us C

 {
 printf ("Child : Hello I am the child process\n") ;
 printf ("Child : Child’s PID: %d\n", getpid()) ;
 printf ("Child : Parent’s PID: %d\n”, getppid()) ;
 }
 else
 {
 printf ("Parent : Hello I am the parent process\n") ;
 printf ("Parent : Parent’s PID: %d\n”, getpid()) ;
 printf ("Parent : Child’s PID: %d\n", pid) ;
 }
}

Given below is the output of the program:

Child : Hello I am the child process
Child : Child's PID: 4706
Child : Parent's PID: 4705
Parent : Hello I am the Parent process
Parent : Parent's PID: 4705
Parent : Child's PID: 4706

In addition to getpid() there is another related function that we
have used in this program—getppid(). As the name suggests, this
function returns the PID of the parent of the calling process.

You can tally the PIDs from the output and convince yourself that
you have understood the fork() function well. A lot of things that
follow use the fork() function. So make sure that you understand
it thoroughly.

Note that even Linux internally uses fork() to create new child
processes. Thus there is a inverted tree like structure of all the
processes running in memory. The father of all these processes is a
process called init. If we want to get a list of all the running
processes in memory we can do so using the ps command as
shown below.

Chapter 19: Interaction With Hardware 659

ps –A

Here the switch –A indicates that we want to list all the running
processes.

More Processes
Suppose we want to execute a program on the disk as part of a
child process. For this first we should create a child process using
fork() and then from within the child process we should call an
exec function to execute the program on the disk as part of a child
process. Note that there is a family of exec library functions, each
basically does the same job but with a minor variation. For
example, execl() function permits us to pass a list of command
line arguments to the program to be executed. execv() also does
the same job as execl() except that the command line arguments
can be passed to it in the form of an array of pointers to strings.
There also exist other variations like execle() and execvp().

Let us now see a program that uses execl() to run a new program
in the child process.

include <unistd.h>
int main()
{
 int pid ;
 pid = fork() ;
 if (pid == 0)
 {
 execl ("/bin/ls","-al", "/etc", NULL) ;
 printf ("Child: After exec()\n") ;
 }
 else
 printf ("Parent process\n") ;
}

660 Let Us C

After forking a child process we have called the execl() function.
This function accepts variable number of arguments. The first
parameter to execl() is the absolute path of the program to be
executed. The remaining parameters describe the command line
arguments for the program to be executed. The last parameter is an
end of argument marker which must always be NULL. Thus in our
case the we have called upon the execl() function to execute the ls
program as shown below

ls -al /etc

As a result, all the contents of the /etc directory are listed on the
screen. Note that the printf() below the call to execl() function is
not executed. This is because the exec family functions overwrite
the image of the calling process with the code and data of the
program that is to be executed. In our case the child process’s
memory was overwritten by the code and data of the ls program.
Hence the call to printf() did not materialize.

It would make little sense in calling execl() before fork(). This is
because a child would not get created and execl() would simply
overwrite the main process itself. As a result, no statement beyond
the call to execl() would ever get executed. Hence fork() and
execl() usually go hand in hand.

Zombies and Orphans
We know that the ps –A command lists all the running processes.
But from where does the ps program get this information? Well,
Linux maintains a table containing information about all the
processes. This table is called ‘Process Table’. Apart from other
information the process table contains an entry of ‘exit code’ of the
process. This integer value indicates the reason why the process
was terminated. Even though the process comes to an end its entry
would remain in the process table until such time that the parent of
the terminated process queries the exit code. This act of querying

Chapter 19: Interaction With Hardware 661

deletes the entry of the terminated process from the process table
and returns the exit code to the parent that raised the query.

When we fork a new child process and the parent and the child
continue to execute there are two possibilities—either the child
process ends first or the parent process ends first. Let us discuss
both these possibilities.

(a)

(b)

Child terminates earlier than the parent

In this case till the time parent does not query the exit code of the
terminated child the entry of the child process would continue to
exist. Such a process in Linux terminology is known as a ‘Zombie’
process. Zombie means ghost, or in plain simple Hindi a ‘Bhoot’.
Moral is, a parent process should query the process table
immediately after the child process has terminated. This would
prevent a zombie.

What if the parent terminates without querying. In such a case the
zombie child process is treated as an ‘Orphan’ process.
Immediately, the father of all processes—init—adopts the
orphaned process. Next, as a responsible parent init queries the
process table as a result of which the child process entry is
eliminated from the process table.

Parent terminates earlier than the child

Since every parent process is launched from the Linux shell, the
parent of the parent is the shell process. When our parent process
terminates, the shell queries the process table. Thus a proper
cleanup happens for the parent process. However, the child process
which is still running is left orphaned. Immediately the init process
would adopt it and when its execution is over init would query the
process table to clean up the entry for the child process. Note that
in this case the child process does not become a zombie.

Thus, when a zombie or an orphan gets created the OS takes over
and ensures that a proper cleanup of the relevant process table

662 Let Us C

entry happens. However, as a good programming practice our
program should get the exit code of the terminated process and
thereby ensure a proper cleanup. Note that here cleanup is
important (it happens anyway). Why is it important to get the exit
code of the terminated process. It is because, it is the exit code that
would give indication about whether the job assigned to the
process was completed successfully or not. The following program
shows how this can be done.

include <unistd.h>
include <sys/types.h>
int main()
{
 unsigned int i = 0 ;
 int pid, status ;
 pid = fork() ;
 if (pid == 0)
 {
 while (i < 4294967295U)
 i++ ;
 printf ("The child is now terminating\n") ;
 }
 else
 {
 waitpid (pid, &status, 0) ;
 if (WIFEXITED (status))
 printf ("Parent: Child terminated normally\n") ;
 else
 printf ("Parent: Child terminated abnormally\n") ;
 }
 return 0 ;
}

In this program we have applied a big loop in the child process.
This loop ensures that the child does not terminate immediately.
From within the parent process we have made a call to the
waitpid() function. This function makes the parent process wait

Chapter 19: Interaction With Hardware 663

till the time the execution of the child process does not come to an
end. This ensures that the child process never becomes orphaned.
Once the child process, terminates the waitpid() function queries
its exit code and returns back to the parent. As a result of querying,
the child process does not become a zombie.

The first parameter of waitpid() function is the pid of the child
process for which the wait has to be performed. The second
parameter is the address of an integer variable which is set up with
the exit status code of the child process. The third parameter is
used to specify some options to control the behavior of the wait
operation. We have not used this parameter and hence we have
passed a 0. Next we have made use of the WIFEXITED() macro
to test if the child process exited normally or not. This macro takes
the status value as a parameter and returns a non-zero value if the
process terminated normally. Using this macro the parent suitably
prints a message to report the status (normal/abnormal)
termination of its child process.

One Interesting Fact
When we use fork() to create a child process the child process
does not contain the entire data and code of the parent process.
Then does it mean that the child process contains the data and code
below the fork() call. Even this is not so. In actuality the code
never gets duplicated. Linux internally manages to intelligently
share it. As against this, some data is shared, some is not. Till the
time both the processes do not change the value of the variables
they keep getting shared. However, if any of the processes (either
child or parent) attempt to change the value of a variable it is no
longer shared. Instead a new copy of the variable is made for the
process that is attempting to change it. This not only ensures data
integrity but also saves precious memory.

664 Let Us C

Summary
(a)

(b)

(c)

(d)

(e)
(f)
(g)

(h)

(i)
(j)
(k)
(l)

(m)
(n)

(o)

(a)
(b)

(c)

Linux is a free OS whose kernel was built by Linus Trovalds
and friends.
A Linux distribution consists of the kernel with source code
along with a large collection of applications, libraries, scripts,
etc.
C programs under Linux can be compiled using the popular
gcc compiler.
Basic scheduling unit in Linux is a ‘Process’. Processes are
scheduled by a special program called ‘Scheduler’.
fork() library function can be used to create child processes.
Init process is the father of all processes.
execl() library function is used to execute another program
from within a running program,.
execl() function overwrites the image (code and data) of the
calling process.
execl() and fork() usually go hand in hand.
ps command can be used to get a list of all processes.
kill command can be used to terminate a process.
A ‘Zombie’ is a child process that has terminated but its
parent is running and has not called a function to get the exit
code of the child process.
An ‘Orphan’ is a child process whose parent has terminated.
Orphaned processes are adopted by init process
automatically.
A parent process can avoid creation of a Zombie and Orphan
processes using waitpid() function.

Exercise

[A] State True or False:

We can modify the kernel of Linux OS.
All distributions of Linux contain the same collection of
applications, libraries and installation scripts.
Basic scheduling unit in Linux is a file.

Chapter 19: Interaction With Hardware 665

(d)

(e)
(f)

(g)

(h)

(i)
(j)
(k)

(a)

(b)

(c)

(d)

(e)

(f)

execl() library function can be used to create a new child
process.
The scheduler process is the father of all processes.
A family of fork() and exec() functions are available, each
doing basically the same job but with minor variations.
fork() completely duplicates the code and data of the parent
process into the child process.
fork() overwrites the image (code and data) of the calling
process.
fork() is called twice but returns once.
Every zombie process is essentially an orphan process.
Every orphan process is essentially an orphan process.

[B] Answer the following:

If a program contains four calls to fork() one after the other
how many total processes would get created?

What is the difference between a zombie process and an
orphan process?

Write a program that prints the command line arguments that
it receives. What would be the output of the program if the
command line argument is * ?

What purpose do the functions getpid(), getppid(),
getpppid() serve?

Rewrite the program in the section ‘Zombies and Orphans’
replacing the while loop with a call to the sleep() function.
Do you observe any change in the output of the program?

 How does waitpid() prevent creation of Zombie or Orphan
processes?

666 Let Us C

21 More Linux
 Programming

• Communication using Signals
• Handling Multiple Signals
• Registering a Common Handler
• Blocking Signals
• Event driven programming
• Where Do You Go From Here
• Summary
• Exercise

667

668 Let Us C

ommunication is the essence of all progress. This is true in
real life as well as in programming. In today’s world a
program that runs in isolation is of little use. A worthwhile

program has to communicate with the outside world in general and
with the OS in particular. In Chapters 16 and 17 we saw how a
Windows based program communicates with Windows. In this
chapter let us explore how this communication happens under
Linux.

C

Communication using Signals
In the last chapter we used fork() and exec() library function to
create a child process and to execute a new program respectively.
These library functions got the job done by communication with
the Linux OS. Thus the direction of communication was from the
program to the OS. The reverse communication—from the OS to
the program—is achieved using a mechanism called ‘Signal’. Let
us now write a simple program that would help you experience the
signal mechanism.

int main()
{
 while (1)
 printf ("Pogram Running\n") ;
 return 0 ;
}

The program is fairly straightforward. All that we have done here
is we have used an infinite while loop to print the message
"Program Running" on the screen. When the program is running
we can terminate it by pressing the Ctrl + C. When we press Ctrl +
C the keyboard device driver informs the Linux kernel about
pressing of this special key combination. The kernel reacts to this
by sending a signal to our program. Since we have done nothing to
handle this signal the default signal handler gets called. In this

Chapter 21: More Linux Programming 669

default signal handler there is code to terminate the program.
Hence on pressing Ctrl + C the program gets terminated.

But how on earth would the default signal handler get called. Well,
it is simple. There are several signals that can be sent to a program.
A unique number is associated with each signal. To avoid
remembering these numbers, they have been defined as macros
like SIGINT, SIGKILL, SIGCONT, etc. in the file ‘signal.h’.
Every process contains several ‘signal ID - function pointer’ pairs
indicating for which signal which function should be called. If we
do not decide to handle a signal then against that signal ID the
address of the default signal handler function is present. It is
precisely this default signal handler for SIGINT that got called
when we pressed Ctrl + C when the above program was executed.
INT in SIGINT stands for interrupt.

Let us know see how can we prevent the termination of our
program even after hitting Ctrl + C. This is shown in the following
program:

include <signal.h>

void sighandler (int signum)
{
 printf ("SIGINT received. Inside sighandler\n") ;
}

int main()
{
 signal (SIGINT, (void*) sighandler) ;
 while (1)
 printf ("Program Running\n") ;
 return 0 ;
}

In this program we have registered a signal handler for the SIGINT
signal by using the signal() library function. The first parameter

670 Let Us C

of this function specifies the ID of the signal that we wish to
register. The second parameter is the address of a function that
should get called whenever the signal is received by our program.
This address has to be typecasted to a void * before passing it to
the signal() function.

Now when we press Ctrl + C the registered handler, namely,
sighandler() would get called. This function would display the
message ‘SIGINT received. Inside sighandler’ and return the
control back to main(). Note that unlike the default handler, our
handler does not terminate the execution of our program. So only
way to terminate it is to kill the running process from a different
terminal. For this we need to open a new instance of command
prompt (terminal). How to start a new instace of command prompt
is discussed in Appendix H. Next do a ps –a to obtain the list of
processes running at all the command prompts that we have
launched. Note down the process id of a.out. Finally kill ‘a.out’
process by saying

kill 3276

In my case the terminal on which I executed a.out was tty1 and its
process id turned out to be 3276. In your case the terminal name
and the process id might be a different number.

If we wish we can abort the execution of the program in the signal
handler itself by using the exit (0) beyond the printf().

Note that signals work asynchronously. That is, when a signal is
received no matter what our program is doing, the signal handler
would immediately get called. Once the execution of the signal
handler is over the execution of the program is resumed from the
point where it left off when the signal was received.

Chapter 21: More Linux Programming 671

Handling Multiple Signals
Now that we know how to handle one signal, let us try to handle
multiple signals. Here is the program to do this…

include <unistd.h>
include <sys/types.h>
include <signal.h>

void inthandler (int signum)
{
 printf ("\nSIGINT Received\n") ;
}

void termhandler (int signum)
{
 printf ("\nSIGTERM Received\n") ;
}

void conthandler (int signum)
{
 printf ("\nSIGCONT Received\n") ;
}

int main()
{
 signal (SIGINT, inthandler) ;
 signal (SIGTERM, termhandler) ;
 signal (SIGCONT, conthandler) ;

 while (1)
 printf ("\rProgram Running") ;

 return 0 ;
}

672 Let Us C

In this program apart from SIGINT we have additionally
registered two new signals, namely, SIGTERM and SIGCONT.
The signal() function is called thrice to register a different handler
for each of the three signals. After registering the signals we enter
a infinite while loop to print the ‘Program running’ message on the
screen.

As in the previous program, here too, when we press Ctrl + C the
handler for the SIGINT i.e. inthandler() is called. However,
when we try to kill the program from the second terminal using the
kill command the program does not terminate. This is because
when the kill command is used it sends the running program a
SIGTERM signal. The default handler for the message terminates
the program. Since we have handled this signal ourselves, the
handler for SIGTERM i.e. termhandler() gets called. As a
result the printf() statement in the termhandler() function gets
executed and the message ‘SIGTERM Received’ gets displayed on
the screen. Once the execution of termhandler() function is over
the program resumes its execution and continues to print ‘Program
Running’. Then how are we supposed to terminate the program?
Simple. Use the following command from the another terminal:

kill –SIGKILL 3276

As the command indicates, we are trying to send a SIGKILL
signal to our program. A SIGKILL signal terminates the program.

Most signals may be caught by the process, but there are a few
signals that the process cannot catch, and they cause the process to
terminate. Such signals are often known as un-catchable signals.
The SIGKILL signal is an un-catchable signal that forcibly
terminates the execution of a process.

Note that even if a process attempts to handle the SIGKILL signal
by registering a handler for it still the control would always land in
the default SIGKILL handler which would terminate the program.

Chapter 21: More Linux Programming 673

The SIGKILL signal is to be used as a last resort to terminate a
program that gets out of control. One such process that makes uses
of this signal is a system shutdown process. It first sends a
SIGTERM signal to all processes, waits for a while, thus giving a
‘grace period’ to all the running processes. However, after the
grace period is over it forcibly terminates all the remaining
processes using the SIGKILL signal.

That leaves only one question—when does a process receive the
SIGCONT signal? Let me try to answer this question.

A process under Linux can be suspended using the Ctrl + Z
command. The process is stopped but is not terminated, i.e. it is
suspended. This gives rise to the un-catchable SIGSTOP signal.
To resume the execution of the suspended process we can make
use of the fg (foreground) command. As a result of which the
suspended program resumes its execution and receives the
SIGCONT signal (CONT means continue execution).

Registering a Common Handler
Instead of registering a separate handler for each signal we may
decide to handle all signals using a common signal handler. This is
shown in the following program:

include <unistd.h>
include <sys/types.h>
include <signal.h>

void sighandler (int signum)
{
 switch (signum)
 {
 case SIGINT :

674 Let Us C

 printf ("SIGINT Received\n") ;
 break ;

 case SIGTERM :
 printf ("SIGTERM Received\n") ;
 break ;

 case SIGCONT :
 printf ("SIGCONT Received\n") ;
 break ;
 }
}

int main()
{
 signal (SIGINT, sighandler) ;
 signal (SIGTERM, sighandler) ;
 signal (SIGCONT, sighandler) ;

 while (1)
 printf ("\rProgram running") ;

 return 0 ;
}

In this program during each call to the signal() function we have
specified the address of a common signal handler named
sighandler(). Thus the same signal handler function would get
called when one of the three signals are received. This does not
lead to a problem since the sighandler() we can figure out inside
the signal ID using the first parameter of the function. In our
program we have made use of the switch-case construct to print a
different message for each of the three signals.

Note that we can easily afford to mix the two methods of
registering signals in a program. That is, we can register separate
signal handlers for some of the signals and a common handler for

Chapter 21: More Linux Programming 675

some other signals. Registering a common handler makes sense if
we want to react to different signals in exactly the same way.

Blocking Signals
Sometimes we may want that flow of execution of a critical/time-
critical portion of the program should not be hampered by the
occurrence of one or more signals. In such a case we may decide
to block the signal. Once we are through with the critical/time-
critical code we can unblock the signals(s). Note that if a signal
arrives when it is blocked it is simply queued into a signal queue.
When the signals are unblocked the process immediately receives
all the pending signals one after another. Thus blocking of signals
defers the delivery of signals to a process till the execution of
some critical/time-critical code is over. Instead of completely
ignoring the signals or letting the signals interrupt the execution, it
is preferable to block the signals for the moment and deliver them
some time later. Let us now write a program to understand signal
blocking. Here is the program…

include <unistd.h>
include <sys/types.h>
include <signal.h>
include <stdio.h>

void sighandler (int signum)
{
 switch (signum)
 {
 case SIGTERM :
 printf ("SIGTERM Received\n") ;
 break ;

 case SIGINT :
 printf ("SIGINT Received\n") ;
 break ;

676 Let Us C

 case SIGCONT :
 printf ("SIGCONT Received\n") ;
 break ;
 }
}

int main()
{
 char buffer [80] = "\0” ;
 sigset_t block ;

 signal (SIGTERM, sighandler) ;
 signal (SIGINT, sighandler) ;
 signal (SIGCONT, sighandler) ;

 sigemptyset (&block) ;
 sigaddset (&block, SIGTERM) ;
 sigaddset (&block, SIGINT) ;

 sigprocmask (SIG_BLOCK, &block, NULL) ;

 while (strcmp (buffer,"n") != 0)
 {
 printf ("Enter a String: ") ;
 gets (buffer) ;
 puts (buffer) ;
 }

 sigprocmask (SIG_UNBLOCK, &block, NULL) ;

 while (1)
 printf ("\rProgram Running") ;

 return 0 ;
}

In this program we have registered a common handler for the
SIGINT, SIGTERM and SIGCONT signals. Next we want to

Chapter 21: More Linux Programming 677

repeatedly accept strings in a buffer and display them on the screen
till the time the user does not enter an ‘n’ from the keyboard.
Additionally, we want that this activity of receiving input should
not be interrupted by the SIGINT or the SIGTERM signals.
However, a SIGCONT should be permitted. So before we proceed
with the loop we must block the SIGINT and SIGTERM signals.
Once we are through with the loop we must unblock these signals.
This blocking and unblocking of signals can be achieved using the
sigprocmask() library function.

The first parameter of the sigprocmask() function specifies
whether we want to block/unblock a set of signals. The next
parameter is the address of a structure (typedefed as sigset_t) that
describes a set of signals that we want to block/unblock. The last
parameter can be either NULL or the address of sigset_t type
variable which would be set up with the existing set of signals
before blocking/unblocking signals.

There are library functions that help us to populate the sigset_t
structure. The sigemptyset() empties a sigset_t variable so that it
does not refer to any signals. The only parameter that this function
accepts is the address of the sigset_t variable. We have used this
function to quickly initialize the sigset_t variable block to a known
empty state. To block the SIGINT and SIGTERM we have to add
the signals to the empty set of signals. This can be achieved using
the sigaddset() library function. The first parameter of
sigaddset() is the address of the sigset_t variable and the second
parameter is the ID of the signal that we wish to add to the existing
set of signals.

After the loop we have also used an infinite while loop to print the
‘Program running’ message. This is done so that we can easily
check that till the time the loop that receives input is not over the
program cannot be terminated using Ctrl + C or kill command
since the signals are blocked. Once the user enters ‘n’ from the
keyboard the execution comes out of the while loop and unblocks

678 Let Us C

the signals. As a result, pending signals, if any, are immediately
delivered to the program. So if we press Ctrl + C or use the kill
command when the execution of the loop that receives input is not
over these signals would be kept pending. Once we are through
with the loop the signal handlers would be called.

Event Driven programming
Having understood the mechanism of signal processing let us now
see how signaling is used by Linux – based libraries to create
event driven GUI programs. As you know, in a GUI program
events occur typically when we click on the window, type a
character, close the window, repaint the window, etc. We have
chosen the GTK library version 2.0 to create the GUI applications.
Here, GTK stands for Gimp’s Tool Kit. Refer Appendix H for
installation of this toolkit. Given below is the first program that
uses this toolkit to create a window on the screen.

/* mywindow.c */
include <gtk/gtk.h>

int main (int argc, char *argv[])
{
 GtkWidget *p ;

 gtk_init (&argc, &argv) ;
 p = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
 gtk_window_set_title (p , "Sample Window") ;
 g_signal_connect (p, "destroy", gtk_main_quit, NULL) ;
 gtk_widget_set_size_request (p, 300, 300) ;
 gtk_widget_show (p) ;
 gtk_main() ;

 return 0 ;
}

Chapter 21: More Linux Programming 679

We need to compile this program as follows:

gcc mywindow.c `pkg-config gtk+-2.0 - -cflags - -libs`

Here we are compiling the program ‘mywindow.c’ and then
linking it with the necessary libraries from GTK toolkit. Note the
quotes that we have used in the command.

Here is the output of the program…

Figure 21.1

The GTK library provides a large number of functions that makes
it very easy for us to create GUI programs. Every window under
GTK is known as a widget. To create a simple window we have to
carry out the following steps:

680 Let Us C

(a)

(b)

(c)

(d)

(e)

Initialize the GTK library with a call to gtk_init() function.
This function requires the addresses of the command line
arguments received in main().

Next, call the gtk_window_new() function to create a top
level window. The only parameter this function takes is the
type of windows to be created. A top level window can be
created by specifying the GTK_WINDOW_TOPLEVEL
value. This call creates a window in memory and returns a
pointer to the widget object. The widget object is a structure
(GtkWidget) variable that stores lots of information including
the attributes of window it represents. We have collected this
pointer in a GtkWidget structure pointer called p.

Set the title for the window by making a call to
gtk_window_set_title() function. The first parameter of this
function is a pointer to the GtkWidget structure representing
the window for which the title has to be set. The second
parameter is a string describing the text to be displayed in the
title of the window.

Register a signal handler for the destroy signal. The destroy
signal is received whenever we try to close the window. The
handler for the destroy signal should perform clean up
activities and then shutdown the application. GTK provides a
ready-made function called gtk_main_quit() that does this
job. We only need to associate this function with the destroy
signal. This can be achieved using the g_signal_connect()
function. The first parameter of this function is the pointer to
the widget for which destroy signal handler has to be
registered. The second parameter is a string that specifies the
name of the signal. The third parameter is the address of the
signal handler routine. We have not used the fourth parameter.

Resize the window to the desired size using the
gtk_widget_set_size_request() function. The second and the

Chapter 21: More Linux Programming 681

third parameters specify the height and the width of the
window respectively.

(f)

(g)

Display the window on the screen using the function
gtk_widget_show().

Wait in a loop to receive events for the window. This can be
accomplished using the gtk_main() function.

How about another program that draws a few shapes in the
window? Here is the program…

/* myshapes.c */
include <gtk/gtk.h>

int expose_event (GtkWidget *widget, GdkEventExpose *event)
{
 GdkGC* p ;
 GdkPoint arr [5] = { 250, 150, 250, 300, 300, 350, 400, 300, 320, 190 } ;

 p = gdk_gc_new (widget -> window) ;
 gdk_draw_line (widget -> window, p, 10, 10, 200, 10) ;
 gdk_draw_rectangle (widget -> window, p, TRUE, 10, 20, 200, 100) ;
 gdk_draw_arc (widget -> window, p, TRUE, 200, 10, 200, 200,
 2880, -2880*2) ;
 gdk_draw_polygon (widget -> window, p, TRUE , arr, 5) ;
 gdk_gc_unref (p) ;

 return TRUE ;
}

int main(int argc, char *argv[])
{
 GtkWidget *p ;

 gtk_init (&argc, &argv) ;

682 Let Us C

 p = gtk_window_new (GTK_WINDOW_TOPLEVEL) ;
 gtk_window_set_title (p, "Sample Window") ;
 g_signal_connect (p, "destroy", gtk_main_quit, NULL) ;
 g_signal_connect (p , "expose_event", expose_event, NULL) ;
 gtk_widget_set_size_request (p, 500, 500) ;
 gtk_widget_show (p) ;
 gtk_main() ;

 return 0 ;
}

Given below is the output of the program.

Chapter 21: More Linux Programming 683

Figure 21.2

This program is similar to the first one. The only difference is that
in addition to the destroy signal we have registered a signal
handler for the expose_event using the g_signal_connect()
function. This signal is sent to our process whenever the window
needs to be redrawn. By writing the code for drawing shapes in the
handler for this signal we are assured that the drawing would never
vanish if the windows is dragged outside the screen and then
brought back in, or some other window uncovers a portion of our
window which was previously overlapped, and so on. This is

684 Let Us C

because a expose_event signal would be sent to our application
which would immediately redraw the shapes in our window.

The way in Windows we have a device context, under Linux we
have a graphics context. In order to draw in the window we need
to obtain a graphics context for the window using the
gdk_gc_new() function. This function returns a pointer to the
graphics context structure. This pointer must be passed to the
drawing functions like gdk_draw_line(), gdk_draw_rectangle(),
gdk_draw_arc(), gdk_draw_polygon(), etc. Once we are
through with drawing we should release the graphics context using
the gdk_gc_unref() function.

Where Do You Go From Here
You have now understood signal processing, the heart of
programming under Linux. With that knowledge under your belt
you are now capable of exploring the vast world of Linux on your
own. Complete Linux programming deserves a book on its own.
Idea here was to raise the hood and show you what lies underneath
it. I am sure that if you have taken a good look at it you can try the
rest yourselves. Good luck!

Summary
(a)

(b)

(c)

(d)

(e)
(f)

Programs can communicate with the Linux OS using library
functions.
The Linux OS communicates with a program by means of
signals.
The interrupt signal (SIGINT) is sent by the kernel to our
program when we press Ctrl + C.
A term signal (SIGTERM) is sent to the program when we
use the kill command.
A process cannot handle an un-catchable signal.
The kill –SIGKILL variation of the kill command generates
an un-catchable SIGKILL signal that terminates a process.

Chapter 21: More Linux Programming 685

(g)

(h)

(i)
(j)
(k)
(l)

(m)

(a)

(b)
(c)
(d)
(e)

(f)

(g)

(h)

(a)

(b)

 A process can block a signal or a set of signals using the
sigprocmask() function.
Blocked signals are delivered to the process when the signals
are unblocked.
A SIGSTOP signal is generated when we press Ctrl + Z.
A SIGSTOP signal is un-catchable signal.
A suspended process can be resumed using the fg command.
A process receives the SIGCONT signal when it resumes
execution.
In GTK, the g_signal_connect() function can be used to
connect a function with an event.

Exercise

[A] State True or False:

All signals registered signals must have a separate signal
handler.
Blocked signals are ignored by a process.
Only one signal can be blocked at a time.
Blocked signals are ignored once the signals are unblocked.
If our signal handler gets called the default signal handler
automatically gets called.
gtk_main() function makes uses of a loop to prevent the
termination of the program.
Multiple signals can be registered at a time using a single call
to signal() function.
The sigprocmask() function can block as well as unblock
signals.

[B] Answer the following:

How does the Linux OS know if we have registered a signal
or not?

What happens when we register a handler for a signal?

686 Let Us C

(c)

(d)

(e)

Write a program to verify that SIGSTOP and SIGKILL
signals are un-catchable signals.

Write a program to handle the SIGINT and SIGTERM
signals. From inside the handler for SIGINT signal write an
infinite loop to print the message ‘Processing Signal’. Run the
program and make use of Ctrl + C more than once. Run the
program once again and press Ctrl + C once then use the kill
command. What are your observations?

Write a program that blocks the SIGTERM signal during
execution of the SIGINT signal.

A Precedence
 Table

687

688 Let Us C

 Description Operator Associativity

 Function expression () Left to Right
 Array Expression [] Left to Right
 Structure operator -> Left to Right
 Structure operator . Left to Right

 Unary minus - Right to left
 Increment/Decrement ++ -- Right to Left
 One’s compliment ~ Right to left
 Negation ! Right to Left
 Address of & Right to left
 Value of address * Right to left
 Type cast (type) Right to left
 Size in bytes sizeof Right to left

 Multiplication * Left to right
 Division / Left to right
 Modulus % Left to right

 Addition + Left to right
 Subtraction - Left to right

 Left shift << Left to right
 Right shift >> Left to right

 Less than < Left to right
 Less than or equal to <= Left to right
 Greater than > Left to right
 Greater than or equal to >= Left to right

 Equal to == Left to right
 Not equal to != Left to right

 Continued…

Appendix A: Precedence Table 689

Continued…

 Description Operator Associativity

 Bitwise AND & Left to right

 Bitwise exclusive OR ^ Left to right

 Bitwise inclusive OR | Left to right

 Logical AND && Left to right

 Logical OR || Left to right

 Conditional ? : Right to left

 Assignment = Right to left
 *= /= %= Right to left
 += -= &= Right to left
 ^= |= Right to left
 <<= >>= Right to left

 Comma , Right to left

Figure A1.1

690 Let Us C

B Standard Library
 Functions

• Standard Library Functions
• Arithmetic Functions
• Data Conversion Functions
• Character Classification Functions
• String Manipulation Functions
• Searching and Sorting Functions
• I/O Functions
• File Handling Functions
• Directory Control Functions
• Buffer Manipulation Functions
• Disk I/O Functions
• Memory Allocation Functions
• Process Control Functions
• Graphics Functions
• Time Related Functions
• Miscellaneous Functions
• DOS Interface Functions

691

692 Let Us C

et alone discussing each standard library function in detail,
even a complete list of these functions would occupy scores
of pages. However, this book would be incomplete if it has

nothing to say about standard library functions. I have tried to
reach a compromise and have given a list of standard library
functions that are more popularly used so that you know what to
search for in the manual. An excellent book dedicated totally to
standard library functions is Waite group’s, Turbo C Bible, written
by Nabjyoti Barkakti.

L

Following is the list of selected standard library functions. The
functions have been classified into broad categories.

Arithmetic Functions

Function Use

abs Returns the absolute value of an integer
cos Calculates cosine
cosh Calculates hyperbolic cosine
exp Raises the exponential e to the xth power
fabs Finds absolute value
floor Finds largest integer less than or equal to argument
fmod Finds floating-point remainder
hypot Calculates hypotenuse of right triangle
log Calculates natural logarithm
log10 Calculates base 10 logarithm
modf Breaks down argument into integer and fractional parts
pow Calculates a value raised to a power
sin Calculates sine
sinh Calculates hyperbolic sine
sqrt Finds square root
tan Calculates tangent
tanh Calculates hyperbolic tangent

Appendix B: Standard Library Functions 693

Data Conversion Functions

Function Use

atof Converts string to float
atoi Converts string to int
atol Converts string to long
ecvt Converts double to string
fcvt Converts double to string
gcvt Converts double to string
itoa Converts int to string
ltoa Converts long to string
strtod Converts string to double
strtol Converts string to long integer
strtoul Converts string to an unsigned long integer
ultoa Converts unsigned long to string

Character classification Functions

Function Use

isalnum Tests for alphanumeric character
isalpha Tests for alphabetic character
isdigit Tests for decimal digit
islower Tests for lowercase character
isspace Tests for white space character
isupper Tests for uppercase character
isxdigit Tests for hexadecimal digit
tolower Tests character and converts to lowercase if uppercase
toupper Tests character and converts to uppercase if lowercase

694 Let Us C

String Manipulation Functions

Function Use

strcat Appends one string to another
strchr Finds first occurrence of a given character in a string
strcmp Compares two strings
strcmpi Compares two strings without regard to case
strcpy Copies one string to another
strdup Duplicates a string
stricmp Compares two strings without regard to case (identical to

strcmpi)
strlen Finds length of a string
strlwr Converts a string to lowercase
strncat Appends a portion of one string to another
strncmp Compares a portion of one string with portion of another

string
strncpy Copies a given number of characters of one string to another
strnicmp Compares a portion of one string with a portion of another

without regard to case
strrchr Finds last occurrence of a given character in a string
strrev Reverses a string
strset Sets all characters in a string to a given character
strstr Finds first occurrence of a given string in another string
strupr Converts a string to uppercase

Searching and Sorting Functions

Function Use

bsearch Performs binary search
lfind Performs linear search for a given value
qsort Performs quick sort

Appendix B: Standard Library Functions 695

I/O Functions

Function Use

Close Closes a file
fclose Closes a file
feof Detects end-of-file
fgetc Reads a character from a file
fgetchar Reads a character from keyboard (function version)
fgets Reads a string from a file
fopen Opens a file
fprintf Writes formatted data to a file
fputc Writes a character to a file
fputchar Writes a character to screen (function version)
fputs Writes a string to a file
fscanf Reads formatted data from a file
fseek Repositions file pointer to given location
ftell Gets current file pointer position
getc Reads a character from a file (macro version)
getch Reads a character from the keyboard
getche Reads a character from keyboard and echoes it
getchar Reads a character from keyboard (macro version)
gets Reads a line from keyboard
inport Reads a two-byte word from the specified I/O port
inportb Reads one byte from the specified I/O port
kbhit Checks for a keystroke at the keyboard
lseek Repositions file pointer to a given location
open Opens a file
outport Writes a two-byte word to the specified I/O port
outportb Writes one byte to the specified I/O port
printf Writes formatted data to screen
putc Writes a character to a file (macro version)
putch Writes a character to the screen
putchar Writes a character to screen (macro version)
puts Writes a line to file
read Reads data from a file

696 Let Us C

rewind Repositions file pointer to beginning of a file
scanf Reads formatted data from keyboard
sscanf Reads formatted input from a string
sprintf Writes formatted output to a string
tell Gets current file pointer position
write Writes data to a file

File Handling Functions

Function Use

remove Deletes file
rename Renames file
unlink Deletes file

Directory Control Functions

Function Use

chdir Changes current working directory
getcwd Gets current working directory
fnsplit Splits a full path name into its components
findfirst Searches a disk directory
findnext Continues findfirst search
mkdir Makes a new directory
rmdir Removes a directory

Buffer Manipulation Functions

Function Use

memchr Returns a pointer to the first occurrence, within a specified
number of characters, of a given character in the buffer

memcmp Compares a specified number of characters from two
buffers

Appendix B: Standard Library Functions 697

memcpy Copies a specified number of characters from one buffer to
another

memicmp Compares a specified number of characters from two
buffers without regard to the case of the characters

memmove Copies a specified number of characters from one buffer to
another

memset Uses a given character to initialize a specified number of
bytes in the buffer

Disk I/O Functions

Function Use

absread Reads absolute disk sectors
abswrite Writes absolute disk sectors
biosdisk Performs BIOS disk services
getdisk Gets current drive number
setdisk Sets current disk drive

Memory Allocation Functions

Function Use

calloc Allocates a block of memory
farmalloc Allocates memory from far heap
farfree Frees a block from far heap
free Frees a block allocated with malloc
malloc Allocates a block of memory
realloc Reallocates a block of memory

Process Control Functions

Function Use

abort Aborts a process
atexit Executes function at program termination

698 Let Us C

execl Executes child process with argument list
exit Terminates the process
spawnl Executes child process with argument list
spawnlp Executes child process using PATH variable and argument

list
system Executes an MS-DOS command

Graphics Functions

Function Use

arc Draws an arc
ellipse Draws an ellipse
floodfill Fills an area of the screen with the current color
getimage Stores a screen image in memory
getlinestyle Obtains the current line style
getpixel Obtains the pixel’s value
lineto Draws a line from the current graphic output position to the

specified point
moveto Moves the current graphic output position to a specified

point
pieslice Draws a pie-slice-shaped figure
putimage Retrieves an image from memory and displays it
rectangle Draws a rectangle
setcolor Sets the current color
setlinestyle Sets the current line style
putpixel Plots a pixel at a specified point
setviewport Limits graphic output and positions the logical origin

within the limited area

Time Related Functions

Function Use

clock Returns the elapsed CPU time for a process
difftime Computes the difference between two times

Appendix B: Standard Library Functions 699

ftime Gets current system time as structure
strdate Returns the current system date as a string
strtime Returns the current system time as a string
time Gets current system time as long integer
setdate Sets DOS date
getdate Gets system date

Miscellaneous Functions

Function Use

delay Suspends execution for an interval (milliseconds)
getenv Gets value of environment variable
getpsp Gets the Program Segment Prefix
perror Prints error message
putenv Adds or modifies value of environment variable
random Generates random numbers
randomize Initializes random number generation with a random value

based on time
sound Turns PC speaker on at specified frequency
nosound Turns PC speaker off

DOS Interface Functions

Function Use

FP_OFF Returns offset portion of a far pointer
FP_SEG Returns segment portion of a far pointer
getvect Gets the current value of the specified interrupt vector
keep Installs terminate-and-stay-resident (TSR) programs
int86 Issues interrupts
int86x Issues interrupts with segment register values
intdos Issues interrupt 21h using registers other than DX and AL
intdosx Issues interrupt 21h using segment register values
MK_FP Makes a far pointer

700 Let Us C

segread Returns current values of segment registers
setvect Sets the current value of the specified interrupt vector

C Chasing The
 Bugs

701

702 Let Us C

programmers are great innovators of our times. Unhappily,
among their most enduring accomplishments are several
new techniques for wasting time. There is no shortage of

horror stories about programs that took twenty times to ‘debug’ as
they did to ‘write’. And one hears again and again about programs
that had to be rewritten all over again because the bugs present in
it could not be located. A typical C programmer’s ‘morning after’
is red eyes, blue face and a pile of crumpled printouts and dozens
of reference books all over the floor. Bugs are C programmer's
birthright. But how do we chase them away. No sure-shot way for
that. I thought if I make a list of more common programming
mistakes it might be of help. They are not arranged in any
particular order. But as you would realize surely a great help!

C

[1] Omitting the ampersand before the variables used in scanf().

For example,

int choice ;
scanf ("%d", choice) ;

Here, the & before the variable choice is missing. Another
common mistake with scanf() is to give blanks either just
before the format string or immediately after the format string
as in,

int choice ;
scanf (" %d ", choice) ;

Note that this is not a mistake, but till you don't understand
scanf() thoroughly, this is going to cause trouble. Safety is in
eliminating the blanks. Thus, the correct form would be,

int choice ;
scanf ("%d", &choice) ;

Appendix C: Chasing The Bugs 703

[2] Using the operator = instead of the operator = =.

What do you think will be the output of the following
program:

main()
{
 int i = 10 ;

 while (i = 10)
 {
 printf ("got to get out") ;
 i++ ;
 }
}

At first glance it appears the message will be printed once and
the control will come out of the loop since i becomes 11. But,
actually we have fallen in an indefinite loop. This is because
the = used in the condition always assigns the value 10 to i,
and since i is non-zero the condition is satisfied and the body
of the loop is executed over and over again.

[3] Ending a loop with a semicolon.

Observe the following program.

main()
{
 int j = 1 ;

 while (j <= 100) ;
 {
 printf ("\nCompguard") ;
 j++ ;
 }
}

704 Let Us C

Inadvertently, we have fallen in an indefinite loop. Cause is
the semicolon after while. This in effect makes the compiler
feel that you wanted the loop to work in the following
manner:

while (j <= 100) ;

This is an indefinite loop since j never gets incremented and
hence eternally remains less that 100.

[4] Omitting the break statement at the end of a case in a switch
statement.

Remember that if a break is not included at the end of a case,
then execution will continue into the next case.

main()
{
 int ch = 1 ;

 switch (ch)
 {
 case 1 :
 printf ("\nGoodbye") ;
 case 2 :
 printf ("\nLieutenant") ;
 }
}
Here, since the break has not been given after the printf() in
case 1, the control runs into case 2 and executes the second
printf() as well.

However, this sometimes turns out to be a blessing in
disguise. Especially, in cases when we are checking whether
the value of a variable equals a capital letter or a small case

Appendix C: Chasing The Bugs 705

letter. This example has been succinctly explained in Chapter
4.

[5] Using continue in a switch.

It is a common error to believe that the way the keyword
break is used with loops and a switch; similarly the keyword
continue can also be used with them. Remember that
continue works only with loops, never with a switch.

[6] A mismatch in the number, type and order of actual and formal
arguments.

yr = romanise (year, 1000, 'm') ;

Here, three arguments in the order int, int and char are being
passed to romanise(). When romanise() receives these
arguments into formal arguments they must be received in the
same order. A careless mismatch might give strange results.

[7] Omitting provisions for returning a non-integer value from a
function.

If we make the following function call,

area = area_circle (1.5) ;

then while defining area_circle() function later in the
program, care should be taken to make it capable of returning
a floating point value. Note that unless otherwise mentioned
the compiler would assume that this function returns a value
of the type int.

[8] Inserting a semicolon at the end of a macro definition.

706 Let Us C

How do you recognize a C programmer? Ask him to write a
paragraph in English and watch whether he ends each
sentence with a semicolon. This usually happens because a C
programmer becomes habitual to ending all statements with a
semicolon. However, a semicolon at the end of a macro
definition might create a problem. For example,

#define UPPER 25 ;

would lead to a syntax error if used in an expression such as

if (counter == UPPER)

This is because on preprocessing, the if statement would take
the form

if (counter == 25)

[9] Omitting parentheses around a macro expansion.

#define SQR(x) x * x
main()
{
 int a ;

 a = 25 / SQR (5) ;
 printf ("\n%d", a) ;
}

In this example we expect the value of a to be 1, whereas it
turns out to be 25. This so happens because on preprocessing
the arithmetic statement takes the following form:

a = 25 / 5 * 5 ;

Appendix C: Chasing The Bugs 707

[10] Leaving a blank space between the macro template and the
macro expansion.

#define ABS (a) (a = 0 ? a : -a)

Here, the space between ABS and (a) makes the preprocessor
believe that you want to expand ABS into (a), which is
certainly not what you want.

[11] Using an expression that has side effects in a macro call.

#define SUM (a) (a + a)
main()
{
 int w, b = 5 ;

 w = SUM(b++) ;
 printf ("\n%d", w) ;
}

On preprocessing, the macro would be expanded to,

w = (b++) + (b++) ;

If you are wanting to first get sum of 5 and 5 and then
increment b to 6, that would not happen using the above
macro definition.

[12] Confusing a character constant and a character string.

In the statement

ch = 'z' ;

a single character is assigned to ch. In the statement

708 Let Us C

ch = "z" ;

a pointer to the character string “a” is assigned to ch.

Note that in the first case, the declaration of ch would be,

char ch ;

whereas in the second case it would be,

char *ch ;

[13] Forgetting the bounds of an array.

main()
{
 int num[50], i ;

 for (i = 1 ; i <= 50 ; i++)
 num[i] = i * i ;
}

Here, in the array num there is no such element as num[50],
since array counting begins with 0 and not 1. Compiler would
not give a warning if our program exceeds the bounds. If not
taken care of, in extreme cases the above code might even
hang the computer.

[14] Forgetting to reserve an extra location in a character array for the
null terminator.

Remember each character array ends with a ‘\0’, therefore its
dimension should be declared big enough to hold the normal
characters as well as the ‘\0’.

Appendix C: Chasing The Bugs 709

For example, the dimension of the array word[] should be 9
if a string “Jamboree” is to be stored in it.

[15] Confusing the precedences of the various operators.

main()
{
 char ch ;
 FILE *fp ;

 fp = fopen ("text.c", "r") ;

 while (ch = getc (fp) != EOF)
 putch (ch) ;

 fclose (fp) ;
}
Here, the value returned by getc() will be first compared with
EOF, since != has a higher priority than =. As a result, the
value that is assigned to ch will be the true/false result of the
test—1 if the value returned by getc() is not equal to EOF,
and 0 otherwise. The correct form of the above while would
be,

while ((ch = getc (fp)) != EOF)
 putch (ch) ;

[16] Confusing the operator -> with the operator . while referring to a
structure element.

Remember, on the left of the operator . only a structure
variable can occur, whereas on the left of the operator -> only
a pointer to a structure can occur. Following example
demonstrates this.

main()

710 Let Us C

{
 struct emp
 {
 char name[35] ;
 int age ;
 } ;
 struct emp e = { "Dubhashi", 40 } ;
 struct emp *ee ;

 printf ("\n%d", e.age) ;
 ee = &e ;
 printf ("\n%d", ee->>age) ;
}

[17] Forgetting to use the far keyword for referring memory locations
beyond the data segment.

main()
{
 unsigned int *s ;

 s = 0x413 ;
 printf ("\n%d", *s) ;
}

Here, it is necessary to use the keyword far in the declaration
of variable s, since the address that we are storing in s (0x413)
is a address of location present in BIOS Data Area, which is
far away from the data segment. Thus, the correct declaration
would look like,

unsigned int far *s ;

The far pointers are 4-byte pointers and are specific to DOS.
Under Windows every pointer is 4-byte pointer.

[18] Exceeding the range of integers and chars.

Appendix C: Chasing The Bugs 711

main()
{
 char ch ;

 for (ch = 0 ; ch <= 255 ; ch++)
 printf ("\n%c %d", ch, ch) ;
}

Can you believe that this is an indefinite loop? Probably, a
closer look would confirm it. Reason is, ch has been declared
as a char and the valid range of char constant is -128 to
+127. Hence, the moment ch tries to become 128 (through
ch++), the value of character range is exceeded, therefore the
first number from the negative side of the range, -128, gets
assigned to ch. Naturally the condition is satisfied and the
control remains within the loop externally.

712 Let Us C

C Creating
 Libraries

701

702 Let Us C

n Chapter 5 we saw how to add/delete functions to/from
existing libraries. At times we may want to create our own
library of functions. Here we would assume that we wish to

create a library containing the functions factorial(), prime() and
fibonacci(). As their names suggest, factorial() calculates and
returns the factorial value of the integer passed to it, prime()
reports whether the number passed to it is a prime number or not
and fibonacci() prints the first n terms of the Fibonacci series,
where n is the number passed to it. Here are the steps that need to
be carried out to create this library. Note that these steps are
specific to Turbo C/C++ compiler and would vary for other
compilers.

I

(a)

(b)

(c)

(d)

(a)

Define the functions factorial(), prime() and fibonacci() in
a file, say ‘myfuncs.c’. Do not define main() in this file.

Create a file ‘myfuncs.h’ and declare the prototypes of
factorial(), prime() and fibonacci() in it as shown below:

int factorial (int) ;
int prime (int) ;
void fibonacci (int) ;

From the Options menu select the menu-item ‘Application’.
From the dialog that pops us select the option ‘Library’.
Select OK.

Compile the program using Alt F9. This would create the
library file called ‘myfuncs.lib’.

That’s it. The library now stands created. Now we have to use the
functions defined in this library. Here is how it can be done.

Create a file, say ‘sample.c’ and type the following code in it.

#include "myfuncs.h"
main()

Appendix C: Creating Libraries 703

{
 int f, result ;
 f = factorial (5) ;
 result = prime (13) ;
 fibonacci (6) ;
 printf ("\n%d %d", f, result) ;
}

Note that the file ‘myfuncs.h’ should be in the same directory
as the file ‘sample.c’. If not, then while including ‘myfuncs.h’
mention the appropriate path.

(b)

(c)

(d)

Go to the ‘Project’ menu and select ‘Open Project…’ option.
On doing so a dialog would pop up. Give the name of the
project, say ‘sample.prj’ and select OK.

From the ‘Project’ menu select ‘Add Item’. On doing so a file
dialog would appear. Select the file ‘sample.c’ and then select
‘Add’. Also add the file ‘myfuncs.lib’ in the same manner.
Finally select ‘Done’.

Compile and execute the project using Ctrl F9.

704 Let Us C

D Hexadecimal
 Numbering

• Numbering Systems
• Relation Between Binary and Hex

713

714 Let Us C

hile working with computers we are often required to use
hexadecimal numbers. The reason for this is—
everything a computer does is based on binary numbers,

and hexadecimal notation is a convenient way of expressing binary
numbers. Before justifying this statement let us first discuss what
numbering systems are, why computers use binary numbering
system, how binary and hexadecimal numbering systems are
related and how to use hexadecimal numbering system in everyday
life.

W

Numbering Systems
When we talk about different numbering systems we are really
talking about the base of the numbering system. For example,
binary numbering system has base 2 and hexadecimal numbering
system has base 16, just the way decimal numbering system has
base 10. What in fact is the ‘base’ of the numbering system? Base
represents number of digits you can use before you run out of
digits. For example, in decimal numbering system, when we have
used digits from 0 to 9, we run out of digits. That’s the time we put
a 1 in the column to the left - the ten’s column - and start again in
the one’s column with 0, as shown below:

0
1
2
3
4
5
6
7
8
9 last available digit
10 start using a new column
11
12
13

Appendix D: Hexadecimal Numbering 715

14
 ...
 ...

Since decimal numbering system is a base 10 numbering system
any number in it is constructed using some combination of digits 0
to 9. This seems perfectly natural. However, the choice of 10 as a
base is quite arbitrary, having its origin possibly in the fact that
man has 10 fingers. It is very easy to use other bases as well. For
example, if we wanted to use base 8 or octal numbering system,
which uses only eight digits (0 to 7), here’s how the counting
would look like:

0
1
2
3
4
5
6
7 last available digit
10 start using a new column
11
12
 ...
 ...

Similarly, a hexadecimal numbering system has a base 16. In hex
notation, the ten digits 0 through 9 are used to represent the values
zero through nine, and the remaining six values, ten through
fifteen, are represented by symbols A to F. The hex digits A to F
are usually written in capitals, but lowercase letters are also
perfectly acceptable. Here is how the counting in hex would look
like:

0
1

716 Let Us C

2
3
4
5
6
7
8
9
A
B
C
D
E
F last available digit
10 start using a new column
11
 ...
 ...

Many other numbering systems can also be imagined. For
example, we use a base 60 numbering system, for measuring
minutes and seconds. From the base 12 system we retain our 12
hour system for time, the number of inches in a foot and so on.
The moral is that any base can be used in a numbering system,
although some bases are convenient than others.

The hex numbers are built out of hex digits in much the same way
the decimal numbers are built out of decimal digits. For example,
when we write the decimal number 342, we mean,

 3 times 100 (square of 10)
+ 4 times 10
+ 2 times 1

Similarly, if we use number 342 as a hex number, we mean,

 3 times 256 (square of 16)

Appendix D: Hexadecimal Numbering 717

+ 4 times 16
+ 2 times 1

Relation Between Binary and Hex
As it turns out, computers are more comfortable with binary
numbering system. In a binary system, there are only two digits 0
and 1. This means you can’t count very far before you need to start
using the next column:

0
1 last available digit
10 start using a new column
11
 ...
 ...

Binary numbering system is a natural system for computers
because each of the thousands of electronic circuits in the
computer can be in one of the two states—on or off. Thus, binary
numbering system corresponds nicely with the circuits in the
computer—0 means off, and 1 means on. 0 and 1 are called bits, a
short-form of binary digits.

Hex numbers are used primarily as shorthand for binary numbers
that the computers work with. Every hex digit represents four bits
of binary information (Refer Figure D.1). In binary numbering
system 4 bits taken at a time can give rise to sixteen different
numbers, so the only way to represent each of these sixteen 4-bit
binary numbers in a simple and short way is to use a base sixteen
numbering system.

Suppose we want to represent a binary number 11000101 in a
short way. One way is to find it decimal equivalent by multiplying
each binary digit with an appropriate power of 2 as shown below:

718 Let Us C

01234567 2*12*02*12*02*02*02*12*1 +++++++

which is equal to 197.

 Hex Binary Hex Binary

 0 0000 8 1000
 1 0001 9 1001
 2 0010 A 1010
 3 0011 B 1011
 4 0100 C 1100
 5 0101 D 1101
 6 0110 E 1110
 7 0111 F 1111

Figure D.1

Another method is much simpler. Just look at Figure D.1. From it
find out the hex digits for the two four-bit sets (1100 and 0101).
These happen to be C and 5. Therefore, the binary number’s hex
equivalent is C5. You would agree this is a easier way to represent
the binary number than to find its decimal equivalent. In this
method neither multiplication nor addition is needed. In fact, since
there are only 16 hex digits, it’s fairly easy to memorize the binary
equivalent of each one. Quick now, what’s binary 1100 in hex?
That’s right C. You are already getting the feel of it. With a little
practice it is easy to translate even long numbers into hex. Thus,
1100 0101 0011 1010 binary is C53A hex.

As it happens with many unfamiliar subjects, learning hexadecimal
requires a little practice. Try your hand at converting some binary
numbers and vice versa. Soon you will be talking hexadecimal as
if you had known it all your life.

E ASCII Chart

719

720 Let Us C

here are 256 distinct characters used by IBM compatible
family of microcomputers. Their values range from 0 to
255. These can be grouped as under:

T

 Character Type No. of Characters

 Capital letters 26
 Small-case Letters 26
 Digits 10
 Special Symbols 32
 Control Character 34
 Graphics Character 128

 Total 256

Figure E.1

Out of the 256 character set, the first 128 are often called ASCII
characters and the next 128 as Extended ASCII characters. Each
ASCII character has a unique appearance. The following simple
program can generate the ASCII chart:

main()
{
 int ch ;

 for (ch = 0 ; ch <<= 255 ; ch++)
 printf ("%d %c\n", ch, ch) ;
}

This chart is shown on the following page. Out of the 128 graphic
characters (Extended ASCII characters), there are characters that
are used for drawing single line and double line boxes in text
mode. For convenience these characters are shown in Figure E.2.

Appendix E: ASCII Chart 721

1╕ 84
209
╤ 213 ╒

╘212

╞198

╧ 190 ╛196

╡181╪
216

186

═ ═205╔201 ╗ 187╦203

╠ 204 ╣185 ╬
206

╩ ╝ ╚

199

╙ 211

╟ ╫
215

╓
214

╜ 189

╢ 182

╨ 208

╖ 183 ╥
210

188
202

200

─ 179

┌ ─ 218 129

┼
197

├195

┴
193 └192

┐191

┤180

┘
217

┬ 194

Figure E.2

722 Let Us C

Value Char Value Char Value Char Value Char Value Char Value Char
0 22 ▬ 44 , 66 B 88 X 110 n
1 ☺ 23 ↕ 45 - 67 C 89 Y 111 o
2 ☻ 24 ↑ 46 . 68 D 90 Z 112 p
3 ♥ 25 ↓ 47 / 69 E 91 [113 q
4 ♦ 26 → 48 0 70 F 92 \ 114 r
5 ♣ 27 ← 49 1 71 G 93] 115 s
6 ♠ 28 ⌐ 50 2 72 H 94 ^ 116 t
7 ● 29 ↔ 51 3 73 I 95 _ 117 u
8 ◘ 30 ▲ 52 4 74 J 96 ` 118 v
9 ○ 31 ▼ 53 5 75 K 97 a 119 w

10 ◙ 32 54 6 76 L 98 b 120 x
11 ♂ 33 ! 55 7 77 M 99 c 121 y
12 ♀ 34 " 56 8 78 N 100 d 122 z
13 ♪ 35 # 57 9 79 O 101 e 123 {
14 ♫ 36 $ 58 : 80 P 102 f 124 |
15 ☼ 37 % 59 ; 81 Q 103 g 125 }
16 ► 38 & 60 < 82 R 104 h 126 ~
17 ◄ 39 ’ 61 = 83 S 105 i 127 мн
18 ↕ 40 (62 > 84 T 106 j 128 Ç
19 ‼ 41) 63 ? 85 U 107 k 129 ü
20 ¶ 42 * 64 @ 86 V 108 l 130 é
21 § 43 + 65 A 87 W 109 m 131 â

Appendix E: ASCII Chart 723

Value Char Value Char Value Char Value Char Value Char Value Char
132 ä 154 Ü 176 ░ 198 ╞ 220 ▄ 242 ≥
133 à 155 ¢ 177 ▒ 199 ╟ 221 ▌ 243 ≤
134 å 156 £ 178 ▓ 200 ╚ 222 ▐ 244 ⌠
135 ç 157 ¥ 179 │ 201 ╔ 223 ▀ 245 ⌡
136 ê 158 ₧ 180 ┤ 202 ╩ 224 α 246 ÷
137 ë 159 ƒ 181 ╡ 203 ╦ 225 β 247 ≈
138 è 160 á 182 ╢ 204 ╠ 226 Г 248 °
139 ï 161 í 183 ╖ 205 ═ 227 π 249 •
140 î 162 ó 184 ╕ 206 ╬ 228 Σ 250 ·
141 ì 163 ú 185 ╣ 207 ╧ 229 σ 251 √
142 Ä 164 ñ 186 ║ 208 ╨ 230 µ 252 η
143 Å 165 Ñ 187 ╗ 209 ╤ 231 τ 253 ²
144 É 166 ª 188 ╝ 210 ╥ 232 Φ 254 ■
145 æ 167 º 189 ╜ 211 ╙ 233 θ 255
146 Æ 168 ¿ 190 ╛ 212 ╘ 234 Ω
147 ô 169 ⌐ 191 ┐ 213 ╒ 235 δ
148 ö 170 ¬ 192 └ 214 ╓ 236 ∞
149 ò 171 ½ 193 ┴ 215 ╫ 237 ø
150 û 172 ¼ 194 ┬ 216 ╪ 238 Є
151 ù 173 ¡ 195 ├ 217 ┘ 239 ∩
152 ÿ 174 « 196 ─ 218 ┌ 240 ≡
153 Ö 175 » 197 ┼ 219 █ 241 ±

724 Let Us C

F Helper.h File

725

726 Let Us C

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

HINSTANCE hInst ; // current instance

/* FUNCTION: InitInstance (HANDLE, int
 PURPOSE: Saves instance handle and creates main window
 COMMENTS: In this function, we save the instance handle in a global
 variable and create and display the main program window.
*/
BOOL InitInstance (HINSTANCE hInstance, int nCmdShow, char* pTitle)
{
 char classname[] = "MyWindowClass" ;
 HWND hWnd ;

 WNDCLASSEX wcex ;
 wcex.cbSize = sizeof (WNDCLASSEX) ;
 wcex.style = CS_HREDRAW | CS_VREDRAW ;
 wcex.lpfnWndProc = (WNDPROC) WndProc ;
 wcex.cbClsExtra = 0 ;
 wcex.cbWndExtra = 0 ;
 wcex.hInstance = hInstance ;
 wcex.hIcon = NULL ;
 wcex.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1) ;
 wcex.lpszMenuName = NULL ;
 wcex.lpszClassName = classname ;
 wcex.hIconSm = NULL ;

 if (!RegisterClassEx (&wcex))
 return FALSE ;

 hInst = hInstance ; // Store instance handle in our global variable

 hWnd = CreateWindow (classname, pTitle,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL,
 NULL, hInstance, NULL) ;
 if (!hWnd)

Appendix F: Helper.h 727

 return FALSE ;

 ShowWindow (hWnd, nCmdShow) ;
 UpdateWindow (hWnd) ;

 return TRUE ;
}

728 Let Us C

G Boot Parameters

729

730 Let Us C

he disk drives in DOS and Windows are organized as zero-
based drives. That is, drive A is drive number 0, drive B is
drive number 1, drive C is drive number 2, etc. The hard

disk drive can be further partitioned into logical partitions. Each
drive consists of four logical parts—Boot Sector, File Allocation
Table (FAT), Directory and Data space. When a file/directory is
created on the disk, instead of allocating a sector for it, a group of
sectors is allocated. This group of sectors is often known as a
cluster. How many sectors together form one cluster depends
upon the capacity of the disk. As the capacity goes on increasing,
so also does the maximum cluster number. Accordingly, we have
12-bit, 16-bit or 32-bit FAT. In a 12-bit FAT each entry is of 12
bits. Since each entry in FAT represents a cluster number, the
maximum cluster number possible in a 12-bit FAT is 212 (4096).
Similarly, in case of a 16-bit FAT the maximum cluster number is
216 (65536). Also, for a 32-bit FAT the maximum cluster number
is 228 (268435456. Only 28 of the 32 bits are used in this FAT).
All FAT systems are not supported by all versions of DOS and
Windows. For example, the 32-bit FAT system is supported only
in Win 95 OSR2 version or later. There are differences in the
organization of contents of Boot Sector, FAT and Directory in
FAT12/FAT16 system on one hand and FAT32 on the other.

T

In Chapter 19 Figure 19.6 we saw the breakup of the contents of
the boot sector of a 12-bit FAT. Given below are the contents of a
boot sector of 16-bit FAT and a 32-bit FAT.

Appendix G: Boot Parameters 731

 Description Length Typical Values

 Jump instruction 3 EB3C90
 OEM name 8 MSWIN4.1
 Bytes per sector 2 512
 Sectors per cluster 1 64
 Reserved sectors 2 1
 Number of FAT copies 1 2
 Max. Root directory entries 2 512
 Total sectors 2 0
 Media descriptor 1 F8
 Sectors per FAT 2 256

 Sectors per track 2 63
 No. of sides 2 255
 Hidden sectors 4 63
 Huge sectors 4 4192902
 BIOS drive number 1 128
 Reserved sectors 1 1
 Boot signature 1 41
 Volume ID 4 4084677574
 Volume label 11 ICIT
 File system type 8 FAT16

Figure G.1

Let us now take a look at the 32-bit FAT system’s boot sector
contents. These are shown in Figure G.2.

732 Let Us C

 Description Length Typical Values

 Jump instruction 3 EB5890
 OEM name 8 MSWIN4.1
 Bytes per sector 2 512
 Sectors per cluster 1 8
 Reserved sectors 2 51
 Number of FAT copies 1 2
 Root directory entries 2 0
 Total sectors 2 0
 Media descriptor 1 F8
 Sectors per FAT 2 0
 Sectors per track 2 63
 No. of sides 2 255
 Hidden sectors 2 63
 High word of hidden sectors 4 63
 Huge sectors 4 4192902
 High word of huge sectors 2 4192902
 Sectors per FAT 2 4095
 High word of sectors per FAT 2 4095
 Drive description flag 2 0
 File system version 2 0

 Root directory starting cluster 2 2
 High word of root directory

starting cluster
2 2

 File system information sector 2 1
 Back up boot sector 2 6
 Reserved 6 0

 continued…

Appendix G: Boot Parameters 733

 …continued

 BIOS drive number 1 128
 Reserved 1 0
 Boot signature 1 41
 Volume ID 4 649825316
 Volume label 11 ICIT
 File system type 8 FAT32

Figure G.2

There are significant changes in the contents of the boo t sector of
a 32-bit FAT system. The entries ‘Number of hidden sectors’ and
‘Huge sectors’ have now been made 4-byte entries. The first two
bytes contain the low word of the value, whereas, the next two
bytes contain the high word value.

The number of sectors per FAT in a 32-bit file system is likely to
exceed what can be accommodated in two bytes. Hence the entry
‘Sectors per FAT’ for a disk with a 32-bit file system would
typically have a value 0. The value of ‘Sectors per FAT’ is now
stored as a 4-byte entity, with the similar arrangement of low word
and high word as discussed earlier.

The boot sector of a 32-bit FAT system also has new entries like
‘Drive description flag’, ‘File system version’ ‘Starting cluster
number of the root directory’, ‘Sector number of the file system
information sector’, and the sector number of the ‘Backup boot
sector’.

The ‘Drive description flag’ is a two-byte entity. Bit 8 of this flag
indicates whether or not the information written to the active FAT
will be written to all copies of the FAT. The low four bits of this
entry contains the 0-based FAT number of the active FAT. These
bits are meaningful only if bit 8 is set.

734 Let Us C

In the entry ‘File system version number’ the high byte contains
the major version number, whereas, the low byte contains the
minor version number.

The entry ‘File system information sector’ contains a value
indicating the sector number where the file system information is
present. This file system information consists of the fields shown
in Figure G.3.

 Description Length

 File system signature 4
 Total number of free clusters 4
 Sector number of the next free cluster 4
 Reserved 6

Figure G.3

The entry ‘File information sector’ contains a value OFFFFh if
there is no such sector. The entry ‘Backup boot sector’ contains a
value 0FFFFh is there is no backup boot sector. Otherwise this
value is any non-zero value less than the reserved sector count.

H Linux Installation

735

736 Let Us C

his appendix gives the steps that are to be carried out for
installing Red Hat Linux 9.0. In addition I have also
indicated a few commands that are necessary to compile

and execute the programs given in Chapters 20 and 21. Follow the
steps mentioned below to carry out the installation.

T
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

Configure the system to boot from CDROM drive.
Insert the first CD in the drive and boot the system from it.
Hit ‘Enter’ key when the ‘boot’ prompt appears.
Select the ‘Skip’ option in the "CD Found" dialog box.
Click on the ‘Next’ button in the ‘Welcome’ screen.
Click on the ‘Next’ button in the ‘Language selection’ screen.
Click on the ‘Next’ button in the ‘Keyboard’ screen.
Click on the ‘Next’ button in the ‘Mouse Configuration’
screen.
Select the ‘Custom’ option in the ‘Installation Type’ screen
and then click on the ‘Next’ button.
Click on the ‘Next’ button in the ‘Disk Partitioning Setup’
screen.
Select the ‘Keep all partitions and use existing free space’
option in the ‘Automatic Partitioning’ screen and then click
on the ‘Next’ button. Ignore any warnings generated by
clicking on the ‘OK’ button.
Click on the ‘Next’ button in the ‘Boot loader configuration’
screen.
Click on the ‘Next’ button in the ‘Network configuration’
screen.
Click on the ‘Next’ button in the ‘Firewall configuration’
screen.
Click on the ‘Next’ button in the ‘additional language
support’ screen.
Select a suitable option in the ‘Time zone offset’ screen and
click on the ‘Next’ button.
Type a password for the root account in the ‘Set root
password’ screen and then click on the ‘Next’ button.
Click on the ‘Next’ button in the ‘Authentication
configuration’ screen.

Appendix H: Linux Installation 737

(s)

(t)
(u)

(v)

(w)

(x)

In the ‘Package group selection’ screen make sure that you
select the following options—X window system, K desktop
environment, Development tools, GNOME software
development and then click on the ‘Next’ button.
Select ‘No’ option in the ‘Boot diskette creation’ screen
Click on the ‘Next’ button in the ‘Graphical Interface (x)
configuration’ screen.
Click on the ‘Next’ button in the ‘Monitor configuration’
screen.
In the ‘Customize graphical configuration’ screen select the
‘Graphical’ option and then click on ‘Next’ button.
Once the system restarts configure the system to boot from
Hard Disk.

Using Red Hat Linux
For logging into the system enter the username and password and
select the session as KDE (K Desktop Environment). Once you
have logged in, to start typing the program use the following menu
options:

KMenu | Run Command

A dialog would now pop up. In this dialog in the command edit
box type KWrite and then click on the Ok button. Now you can
type the program and save it.

To compile the program you need to go the command prompt.
This can be done using the following menu option.

KMenu | System Tools | Terminal

Once at the command prompt you can use the gcc compiler to
compile and execute your programs. You can launch another
instance of the command prompt by repeating the step mentioned
above.

738 Let Us C

